ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Gas in Lensed z>2 Quasar Host Galaxies and the Star Formation Law for Galaxies with Luminous Active Galactic Nuclei

408   0   0.0 ( 0 )
 نشر من قبل Dominik Riechers
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of luminous CO(2-1), CO(3-2), and CO(4-3) emission in the strongly lensed high-redshift quasars B1938+666 (z=2.059), HE0230-2130 (z=2.166), HE1104-1805 (z=2.322), and B1359+154 (z=3.240), using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). B1938+666 was identified in a `blind CO redshift search, demonstrating the feasibility of such investigations with millimeter interferometers. These galaxies are lensing-amplified by factors of mu_L~11-170, and thus allow us to probe molecular gas in intrinsically fainter galaxies than currently possible without the aid of gravitational lensing. We report lensing-corrected intrinsic CO line luminosities of L(CO) = 0.65-21 x 10^9 K km/s pc^2, translating to H2 masses of M(H2) = 0.52-17 x 10^9 (alpha_CO/0.8) M_sun. To investigate whether or not the AGN in luminous quasars substantially contribute to L_FIR, we study the L(CO)-L_FIR relation for quasars relative to galaxies without a luminous AGN as a function of redshift. We find no substantial differences between submillimeter galaxies and high-z quasars, but marginal evidence for an excess in L_FIR in nearby low-L_FIR AGN galaxies. This may suggest that an AGN contribution to L_FIR is significant in systems with relatively low gas and dust content, but only minor in the most far-infrared-luminous galaxies (in which L_FIR is dominated by star formation).



قيم البحث

اقرأ أيضاً

We review recent evidence for a clear association between accretion onto supermassive black holes and star formation up to z~1 in the zCOSMOS survey. Star formation rates (SFRs) are determined from the [OII] emission-line strength and a correction fo r the AGN contribution. We find that SFRs of X-ray selected AGN span a distribution of 1-100 solar masses per year and evolve in a manner that is indistinguishable from that of massive, star-forming galaxies. The close relationship between AGN activity and star formation is further supported by an increase in the AGN fraction with bluer rest-frame colors (U-V); we further illustrate how the location of AGNs in a color-magnitude diagram can be misleading in luminosity-limited samples due to the dependence of AGN activity on the stellar mass and the low mass-to-light ratios of blue cloud galaxies. To conclude, our results support a co-evolutionary scenario up to z~1 based on the constancy with redshift of the ratio between mass accretion rate and SFR.
We report the detection of CO(1-0) emission in the strongly lensed high-redshift quasars IRAS F10214+4724 (z=2.286), the Cloverleaf (z=2.558), RX J0911+0551 (z=2.796), SMM J04135+10277 (z=2.846), and MG 0751+2716 (z=3.200), using the Expanded Very La rge Array and the Green Bank Telescope. We report lensing-corrected CO(1-0) line luminosities of L(CO) = 0.34-18.4 x 10^10 K km/s pc^2 and total molecular gas masses of M(H2) = 0.27-14.7 x 10^10 Msun for the sources in our sample. Based on CO line ratios relative to previously reported observations in J>=3 rotational transitions and line excitation modeling, we find that the CO(1-0) line strengths in our targets are consistent with single, highly-excited gas components with constant brightness temperature up to mid-J levels. We thus do not find any evidence for luminous extended, low excitation, low surface brightness molecular gas components. These properties are comparable to those found in z>4 quasars with existing CO(1-0) observations. These findings stand in contrast to recent CO(1-0) observations of z~2-4 submillimeter galaxies (SMGs), which have lower CO excitation and show evidence for multiple excitation components, including some low-excitation gas. These findings are consistent with the picture that gas-rich quasars and SMGs represent different stages in the early evolution of massive galaxies.
We use stellar population synthesis modeling to analyze the host galaxy properties of a sample of 33 UV-selected, narrow-lined active galactic nuclei (AGNs) at z ~ 2 - 3. In order to quantify the contribution of AGN emission to host galaxy broadband spectral energy distributions (SEDs), we use the subsample of 11 AGNs with photometric coverage spanning from rest-frame UV through near-IR wavelengths. Modeling the SEDs of these objects with a linear combination of stellar population and AGN templates, we infer the effect of the AGN on derived stellar population parameters. We also estimate the typical bias in derived stellar populations for AGNs lacking rest-frame near-IR wavelength coverage, and develop a method for inferring the true host galaxy properties. We compare AGN host galaxy properties to those of a sample of UV-selected, star-forming non-AGNs in the same redshift range, including a subsample carefully matched in stellar mass. Although the AGNs have higher masses and SFRs than the full non-active sample, their stellar population properties are consistent with those of the mass-selected sample, suggesting that the presence of an AGN is not connected with the cessation of star-formation activity in star-forming galaxies at z ~ 2 - 3. We suggest that a correlation between M_BH and galaxy stellar mass is already in place at this epoch. Assuming a roughly constant Eddington ratio for AGNs at all stellar masses, we are unable to detect the AGNs in low-mass galaxies because they are simply too faint.
56 - H.-W. Rix 1999
We present H-band observations of gravitationally lensed QSO host galaxies obtained with NICMOS on HST as part of the CfA-Arizona-Gravitational-Lens-Survey (CASTLES). The detections are greatly facilitated by the lensing magnification in these system s; we find that most hosts of radio-quiet QSOs (RQQ) at z~2 are of modest luminosity (L<L_*). They are 2-5 times fainter than the hosts of radio-loud QSOs at the same epoch. Compared to low redshifts, RQQ hosts at z~2 also support higher nuclear luminosities at given stellar host mass. This suggests that the supermassive black holes at their centers grew faster at early epochs than the stellar body of their surrounding host galaxies.
The molecular gas serves as a key probe of the complex interplay between black hole accretion and star formation in the host galaxies of active galactic nuclei (AGNs). We use CO(2-1) observations from a new ALMA survey, in conjunction with literature measurements, to investigate the molecular gas properties of a representative sample of 40 z<0.3 Palomar-Green quasars, the largest and most sensitive study of molecular gas emission to date for nearby quasars. We find that the AGN luminosity correlates with both the CO luminosity and black hole mass, suggesting that AGN activity is loosely coupled to the cold gas reservoir of the host. The observed strong correlation between host galaxy total infrared luminosity and AGN luminosity arises from their common dependence on the molecular gas. We argue that the total infrared luminosity, at least for low-redshift quasars, can be used to derive reliable star formation rates for the host galaxy. The host galaxies of low-redshift quasars have molecular gas content similar to that of star-forming galaxies of comparable stellar mass. Moreover, they share similar gas kinematics, as evidenced by their CO Tully-Fisher relation and the absence of detectable molecular outflows down to sensitive limits. There is no sign that AGN feedback quenches star formation for the quasars in our sample. On the contrary, the abundant gas supply forms stars prodigiously, at a rate that places most of them above the star-forming main sequence and with an efficiency that rivals that of starburst systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا