ترغب بنشر مسار تعليمي؟ اضغط هنا

Full Counting statistics of level renormalization in electron transport through double quantum dots

127   0   0.0 ( 0 )
 نشر من قبل JunYan Luo
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the full counting statistics of electron transport through double quantum dots coupled in series, with particular attention being paid to the unique features originating from level renormalization. It is clearly illustrated that the energy renormalization gives rise to a dynamic charge blockade mechanism, which eventually results in super-Poissonian noise. Coupling of the double dots to an external heat bath leads to dephasing and relaxation mechanisms, which are demonstrated to suppress the noise in a unique way.



قيم البحث

اقرأ أيضاً

A mesoscopic Coulomb blockade system with two identical transport channels is studied in terms of full counting statistics. It is found that the average current cannot distinguish the quantum constructive interference from the classical non-interfere nce, but the shot noise and skewness are more sensitive to the nature of quantum mechanical interference and can fulfill that task. The interesting super-Poisson shot noise is found and is demonstrated as a consequence of constructive interference, which induces an effective system with fast-and-slow transport channels. Dephasing effects on the counting statistics are carried out to display the continuous transition from quantum interfering to non-interfering transports.
155 - Jens Koch , M.E. Raikh , 2005
We study analytically the full counting statistics of charge transport through single molecules, strongly coupled to a weakly damped vibrational mode. The specifics of transport in this regime - a hierarchical sequence of avalanches of transferred ch arges, interrupted by quiet periods - make the counting statistics strongly non-Gaussian. We support our findings for the counting statistics as well as for the frequency-dependent noise power by numerical simulations, finding excellent agreement.
The internal dynamics of a double quantum dot system is renormalized due to coupling respectively with transport electrodes and a dissipative heat bath. Their essential differences are identified unambiguously in the context of full counting statisti cs. The electrode coupling caused level detuning renormalization gives rise to a fast-to-slow transport mechanism, which is not resolved at all in the average current, but revealed uniquely by pronounced super-Poissonian shot noise and skewness. The heat bath coupling introduces an interdot coupling renormalization, which results in asymmetric Fano factor and an intriguing change of line shape in the skewness.
97 - Chao Zhang , Fuming Xu , 2020
The coherent potential approximation (CPA) within full counting statistics (FCS) formalism is shown to be a suitable method to investigate average electric conductance, shot noise as well as higher order cumulants in disordered systems. We develop a similar FCS-CPA formalism for phonon transport through disordered systems. As a byproduct, we derive relations among coefficients of different phonon current cumulants. We apply the FCS-CPA method to investigate phonon transport properties of graphene systems in the presence of disorders. For binary disorders as well as Anderson disorders, we calculate up to the $8$-th phonon transmission moments and demonstrate that the numerical results of the FCS-CPA method agree very well with that of the brute force method. The benchmark shows that the FCS-CPA method achieves $20$ times more speedup ratio. Collective features of phonon current cumulants are also revealed.
We use time-resolved charge detection techniques to investigate single-electron tunneling in semiconductor quantum dots. The ability to detect individual charges in real-time makes it possible to count electrons one-by-one as they pass through the st ructure. The setup can thus be used as a high-precision current meter for measuring ultra-low currents, with resolution several orders of magnitude better than that of conventional current meters. In addition to measuring the average current, the counting procedure also makes it possible to investigate correlations between charge carriers. In quantum dots, we find that the strong Coulomb interaction makes electrons try to avoid each other. This leads to electron anti-bunching, giving stronger correlations and reduced noise compared to a current carried by statistically independent electrons. The charge detector is implemented by monitoring changes in conductance in a near-by capacitively coupled quantum point contact. We find that the quantum point contact not only serves as a detector but also causes a back-action onto the measured device. Electron scattering in the quantum point contact leads to emission of microwave radiation. The radiation is found to induce an electronic transition between two quantum dots, similar to the absorption of light in real atoms and molecules. Using a charge detector to probe the electron transitions, we can relate a single-electron tunneling event to the absorption of a single photon. Moreover, since the energy levels of the double quantum dot can be tuned by external gate voltages, we use the device as a frequency-selective single-photon detector operating at microwave energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا