ﻻ يوجد ملخص باللغة العربية
The distribution of masses for neutron stars is analyzed using the Bayesian statistical inference, evaluating the likelihood of proposed gaussian peaks by using fifty-four measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around $1.37 {M_{odot}}$, and a much wider second peak at $1.73 {M_{odot}}$. The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (even if no attempt to label the systems has been made here), and argues against the single-mass scale viewpoint. The bimodal distribution can also accommodate the recent findings of $sim M_{odot}$ masses quite naturally. Finally, we explore the existence of a subgroup around $1.25 {M_{odot}}$, finding weak, if any, evidence for it. This recently claimed low-mass subgroup, possibly related to $O-Mg-Ne$ core collapse events, has a monotonically decreasing likelihood and does not stand out clearly from the rest of the sample.
We present the results of a monitoring campaign of three eclipsing high-mass X-ray binaries (HMXBs: SMC X-1, LMC X-4 and Cen X-3). High-resolution VLT/UVES spectra are used to measure the radial velocities of these systems with high accuracy. We show
Extremely metal-poor stars are uniquely informative on the nature of massive Population III stars. Modulo a few elements that vary with stellar evolution, the present-day photospheric abundances observed in extremely metal-poor stars are representati
The discovery of two neutron star-black hole coalescences by LIGO and Virgo brings the total number of likely neutron stars observed in gravitational waves to six. We perform the first inference of the mass distribution of this extragalactic populati
We investigate remnant neutron star masses (in particular, the minimum allowed mass) by performing advanced stellar evolution calculations and neutrino-radiation hydrodynamics simulations for core-collapse supernova explosions. We find that, based on
The vast majority (>=90%) of presolar SiC grains identified in primitive meteorites are relics of ancient asymptotic giant branch (AGB) stars, whose ejecta were incorporated into the Solar System during its formation. Detailed characterization of the