ﻻ يوجد ملخص باللغة العربية
We analyze the charge and spin transport through a ballistic ferromagnet/insulator/superconductor junction by means of the Bogoliubov-de Gennes equations. For the ferromagnetic side we assume that ferromagnetism may be driven by an unequal mass renormalization of oppositely polarized carriers, i.e. a spin bandwidth asymmetry, and/or by a rigid splitting of up-and down-spin electron bands, as in a standard Stoner ferromagnet, whereas the superconducting side is assumed to exhibit a d-wave symmetry of the order parameter, which can be pure or accompanied by a minority component breaking time-reversal symmetry. Several remarkable features in the charge conductance arise in this kind of junction, providing useful information about the mechanism of ferromagnetism in the ferromagnetic electrode, as well as of the order parameter symmetry in the superconducting one. In particular, we show that when a time-reversal symmetry breaking superconductor is considered, the use of the two kinds of ferromagnet mentioned above represents a valuable tool to discriminate between the different superconducting mixed states. We also explain how this junction may mimic a switch able to turn on and off a spin current, leaving the charge conductance unchanged, and we show that for a wide range of insulating barrier strengths, a spin bandwidth asymmetry ferromagnet may support a spin current larger than a standard Stoner one.
We study a novel type of coupling between spin and orbital degrees of freedom which appears at triplet superconductor-ferromagnet interfaces. Using a self-consistent spatially-dependent mean-field theory, we show that increasing the angle between the
We investigate transport properties of junctions between two spin-split superconductors linked by a spin-polarized tunneling barrier. The spin-splitting fields in the superconductors (S) are induced by adjacent ferromagnetic insulating (FI) layers wi
We investigate the charge and spin transport in half-metallic ferromagnet ($F$) and superconductor ($S$) nanojunctions. We utilize a self-consistent microscopic method that can accommodate the broad range of energy scales present, and ensures proximi
We have measured the transport properties of Ferromagnet - Superconductor nanostructures, where two superconducting aluminum (Al) electrodes are connected through two ferromagnetic iron (Fe) ellipsoids in parallel. We find that, below the superconduc
We present a theoretical study of electronic transport in a hybrid junction consisting of an excitonic insulator sandwiched between a normal and a superconducting electrode. The normal region is described as a two-band semimetal and the superconducti