ﻻ يوجد ملخص باللغة العربية
The calculation of the self force in the modeling of the gravitational-wave emission from extreme-mass-ratio binaries is a challenging task. Here we address the question of the possible emergence of a persistent spurious solution in time-domain schemes, referred to as a {em Jost junk solution} in the literature, that may contaminate self force calculations. Previous studies suggested that Jost solutions are due to the use of zero initial data, which is inconsistent with the singular sources associated with the small object, described as a point mass. However, in this work we show that the specific origin is an inconsistency in the translation of the singular sources into jump conditions. More importantly, we identify the correct implementation of the sources at late times as the sufficient condition guaranteeing the absence of Jost junk solutions.
The computation of the self-force constitutes one of the main challenges for the construction of precise theoretical waveform templates in order to detect and analyze extreme-mass-ratio inspirals with the future space-based gravitational-wave observa
The equations of motion of a point particle interacting with its own field are defined in terms of a certain regularized self-field. Two of the leading methods for computing this regularized field are the mode-sum and effective-source approaches. In
We apply our method of indirect integration, described in Part I, at fourth order, to the radial fall affected by the self-force. The Mode-Sum regularisation is performed in the Regge-Wheeler gauge using the equivalence with the harmonic gauge for th
Inspirals of stellar-mass objects into massive black holes will be important sources for the space-based gravitational-wave detector LISA. Modelling these systems requires calculating the metric perturbation due to a point particle orbiting a Kerr bl
Much of the success of gravitational-wave astronomy rests on perturbation theory. Historically, perturbative analysis of gravitational-wave sources has largely focused on post-Newtonian theory. However, strong-field perturbation theory is essential i