ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear phononics: A new ultrafast route to lattice control

624   0   0.0 ( 0 )
 نشر من قبل Michael F\\\"orst
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To date, two types of coupling between electromagnetic radiation and a crystal lattice have been identified experimentally. One is direct, for infrared (IR)-active vibrations that carry an electric dipole. The second is indirect, it occurs through intermediate excitation of the electronic system via electron-phonon coupling, as in stimulated Raman scattering. Nearly 40 years ago, proposals were made of a third path, referred to as ionic Raman scattering (IRS). It was posited that excitation of an IR-active phonon could serve as the intermediate state for a Raman scattering process relying on lattice anharmonicity as opposed to electron phonon interaction. In this paper, we report an experimental demonstration of ionic Raman scattering and show that this mechanism is relevant to optical control in solids. The key insight is that a rectified phonon field can exert a directional force onto the crystal, inducing an abrupt displacement of the atoms from the equilibrium positions that could not be achieved through excitation of an IR-active vibration alone, for which the force is oscillatory. IRS opens up a new direction for the coherent control of solids in their electronic ground state, different from approaches that rely on electronic excitations.



قيم البحث

اقرأ أيضاً

Nonlinear interactions between phonon modes govern the behavior of vibrationally highly excited solids and molecules. Here, we demonstrate theoretically that optical cavities can be used to control the redistribution of energy from a highly excited c oherent infrared-active phonon state into the other vibrational degrees of freedom of the system. The hybridization of the infrared-active phonon mode with the fundamental mode of the cavity induces a polaritonic splitting that we use to tune the nonlinear interactions with other vibrational modes in and out of resonance. We show that not only can the efficiency of the redistribution of energy be enhanced or decreased, but also the underlying scattering mechanisms may be changed. This work introduces the concept of cavity control to the field of nonlinear phononics, enabling nonequilibrium quantum optical engineering of new states of matter.
Nonlinear phononics relies on the resonant optical excitation of infrared-active lattice vibrations to coherently induce targeted structural deformations in solids. This form of dynamical crystal-structure design has been applied to control the funct ional properties of many interesting systems, including magneto-resistive manganites, magnetic materials, superconductors, and ferroelectrics. However, phononics has so far been restricted to protocols in which structural deformations occur locally within the optically excited volume, sometimes resulting in unwanted heating. Here, we extend nonlinear phononics to propagating polaritons, effectively separating in space the optical drive from the functional response. Mid-infrared optical pulses are used to resonantly drive an 18 THz phonon at the surface of ferroelectric LiNbO3. A time-resolved stimulated Raman scattering probe reveals that the ferroelectric polarization is reduced over the entire 50 micron depth of the sample, far beyond the ~ micron depth of the evanescent phonon field. We attribute the bulk response of the ferroelectric polarization to the excitation of a propagating 2.5 THz soft-mode phonon-polariton. For the highest excitation amplitudes, we reach a regime in which the polarization is reversed. In this this non-perturbative regime, we expect that the polariton model evolves into that of a solitonic domain wall that propagates from the surface into the materials at near the speed of light.
Optical nonlinearities in solids reveal information about both the in-plane rotational and out-of-plane inversion symmetries of a crystal. In the van der Waals material hexagonal boron nitride (hBN) both these symmetries and the linear vibrational pr operties have led to the rich physics of mid-infrared phonon-polaritons. However, the role of strong electron-phonon nonlinearities requires further study. In this work, we investigate both theoretically and experimentally the rich interplay of phonon anharmonicity and symmetry in phonon-polariton mediated nonlinear optics. We show that large enhancements (>30x) of third-harmonic generation occur for incident femtosecond pulses that are resonant with the hBN transverse optical phonons. In addition, we predict and observe large transient sub-picosecond duration second-harmonic signals during resonant excitation, which in equilibrium is forbidden by symmetry. This surprising result indicates that instantaneous crystal inversion symmetry breaking can be optically induced and controlled via phonon interactions by both the power and polarization of the pump laser.
A grand challenge underlies the entire field of topology-enabled quantum logic and information science: how to establish topological control principles driven by quantum coherence and understand the time-dependence of such periodic driving? Here we d emonstrate a THz pulse-induced phase transition in Dirac materials that is periodically driven by vibrational coherence due to excitation of the lowest Raman-active mode. Above a critical field threshold, there emerges a long-lived metastable phase with unique Raman coherent phonon-assisted switching dynamics, absent for optical pumping. The switching also manifest itself by non-thermal spectral shape, relaxation slowing down near the Lifshitz transition where the critical Dirac point (DP) occurs, and diminishing signals at the same temperature that the Berry curvature induced Anomalous Hall Effect varnishes. These results, together with first-principles modeling, identify a mode-selective Raman coupling that drives the system from strong to weak topological insulators, STI to WTI, with a Dirac semimetal phase established at a critical atomic displacement controlled by the phonon pumping. Harnessing of vibrational coherence can be extended to steer symmetry-breaking transitions, i.e., Dirac to Weyl ones, with implications on THz topological quantum gate and error correction applications.
Using a combination of first-principles and magnetization-dynamics calculations, we study the effect of the intense optical excitation of phonons on the magnetic behavior in insulating magnetic materials. Taking the prototypical magnetoelectric CrO a s our model system, we show that excitation of a polar mode at 17 THz causes a pronounced modification of the magnetic exchange interactions through a change in the average Cr-Cr distance. In particular, the quasi-static deformation induced by nonlinear phononic coupling yields a structure with a modified magnetic state, which persists for the duration of the phonon excitation. In addition, our time-dependent magnetization dynamics computations show that systematic modulation of the magnetic exchange interaction by the phonon excitation modifies the magnetization dynamics. This temporal modulation of the magnetic exchange interaction strengths using phonons provides a new route to creating non-equilibrium magnetic states and suggests new avenues for fast manipulation of spin arrangements and dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا