ترغب بنشر مسار تعليمي؟ اضغط هنا

Secret Writing on Dirty Paper: A Deterministic View

102   0   0.0 ( 0 )
 نشر من قبل Tie Liu
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently there has been a lot of success in using the deterministic approach to provide approximate characterization of Gaussian network capacity. In this paper, we take a deterministic view and revisit the problem of wiretap channel with side information. A precise characterization of the secrecy capacity is obtained for a linear deterministic model, which naturally suggests a coding scheme which we show to achieve the secrecy capacity of the degraded Gaussian model (dubbed as secret writing on dirty paper) to within half a bit.



قيم البحث

اقرأ أيضاً

The Carbon Copy onto Dirty Paper (CCDP) channel is the compound writing on dirty paper channel in which the channel output is obtained as the sum of the channel input, white Gaussian noise and a Gaussian state sequence randomly selected among a set p ossible realizations. The transmitter has non-causal knowledge of the set of possible state sequences but does not know which sequence is selected to produce the channel output. We study the capacity of the CCDP channel for two scenarios: (i) the state sequences are independent and identically distributed, and (ii) the state sequences are scal
253 - Yuval Kochman , Ram Zamir 2008
The combination of source coding with decoder side-information (Wyner-Ziv problem) and channel coding with encoder side-information (Gelfand-Pinsker problem) can be optimally solved using the separation principle. In this work we show an alternative scheme for the quadratic-Gaussian case, which merges source and channel coding. This scheme achieves the optimal performance by a applying modulo-lattice modulation to the analog source. Thus it saves the complexity of quantization and channel decoding, and remains with the task of shaping only. Furthermore, for high signal-to-noise ratio (SNR), the scheme approaches the optimal performance using an SNR-independent encoder, thus it is robust to unknown SNR at the encoder.
Secure communication with feedback is studied. An achievability scheme in which the backward channel is used to generate a shared secret key is proposed. The scenario of binary symmetric forward and backward channels is considered, and a combination of the proposed scheme and Maurers coding scheme is shown to achieve improved secrecy rates. The scenario of a Gaussian channel with perfect output feedback is also analyzed and the Schalkwijk-Kailath coding scheme is shown to achieve the secrecy capacity for this channel.
In this work, we consider a complete covert communication system, which includes the source-model of a stealthy secret key generation (SSKG) as the first phase. The generated key will be used for the covert communication in the second phase of the cu rrent round and also in the first phase of the next round. We investigate the stealthy SK rate performance of the first phase. The derived results show that the SK capacity lower and upper bounds of the source-model SKG are not affected by the additional stealth constraint. This result implies that we can attain the SSKG capacity for free when the sequences observed by the three terminals Alice ($X^n$), Bob ($Y^n$) and Willie ($Z^n$) follow a Markov chain relationship, i.e., $X^n-Y^n-Z^n$. We then prove that the sufficient condition to attain both, the SK capacity as well as the SSK capacity, can be relaxed from physical to stochastic degradedness. In order to underline the practical relevance, we also derive a sufficient condition to attain the degradedness by the usual stochastic order for Maurers fast fading Gaussian (satellite) model for the source of common randomness.
In the scalar dirty multiple-access channel, in addition to Gaussian noise, two additive interference signals are present, each known non-causally to a single transmitter. It was shown by Philosof et al. that for strong interferences, an i.i.d. ensem ble of codes does not achieve the capacity region. Rather, a structured-codes approach was presented, that was shown to be optimal in the limit of high signal-to-noise ratios, where the sum-capacity is dictated by the minimal (bottleneck) channel gain. In this paper, we consider the multiple-input multiple-output (MIMO) variant of this setting. In order to incorporate structured codes in this case, one can utilize matrix decompositions that transform the channel into effective parallel scalar dirty multiple-access channels. This approach however suffers from a bottleneck effect for each effective scalar channel and therefore the achievable rates strongly depend on the chosen decomposition. It is shown that a recently proposed decomposition, where the diagonals of the effective channel matrices are equal up to a scaling factor, is optimal at high signal-to-noise ratios, under an equal rank assumption. This approach is then extended to any number of transmitters. Finally, an application to physical-layer network coding for the MIMO two-way relay channel is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا