ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel-ATLAS: Rapid evolution of dust in galaxies in the last 5 billion years

114   0   0.0 ( 0 )
 نشر من قبل Loretta Dunne
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first direct and unbiased measurement of the evolution of the dust mass function of galaxies over the past 5 billion years of cosmic history using data from the Science Demonstration Phase of the Herschel-ATLAS. The sample consists of galaxies selected at 250{mu}m which have reliable counterparts from SDSS at z < 0.5, and contains 1867 sources. Dust masses are calculated using both a single temperature grey-body model for the spectral energy distribution and also using a model with multiple temperature components. The dust temperature for either model shows no trend with redshift. Splitting the sample into bins of redshift reveals a strong evolution in the dust properties of the most massive galaxies. At z = 0.4 - 0.5, massive galaxies had dust masses about five times larger than in the local Universe. At the same time, the dust-to-stellar mass ratio was about 3-4 times larger, and the optical depth derived from fitting the UV-sub-mm data with an energy balance model was also higher. This increase in the dust content of massive galaxies at high redshift is difficult to explain using standard dust evolution models and requires a rapid gas consumption timescale together with either a more top-heavy IMF, efficient mantle growth, less dust destruction or combinations of all three. This evolution in dust mass is likely to be associated with a change in overall ISM mass, and points to an enhanced supply of fuel for star formation at earlier cosmic epochs.



قيم البحث

اقرأ أيضاً

134 - Kathy L Cooksey 2010
We identified 24 SiIV absorption systems with z <~ 1 from a blind survey of 49 low-redshift quasars with archival Hubble Space Telescope ultraviolet spectra. We relied solely on the characteristic wavelength separation of the doublet to automatically detect candidates. After visual inspection, we defined a sample of 20 definite (group G = 1) and 4 highly-likely (G = 2) doublets with rest equivalent widths W_r for both lines detected at > 3 sigma. The absorber line density of the G = 1 doublets was dN_SiIV/dX = 1.4+0.4/-0.3 for log N(Si+3) > 12.9. The best-fit power law to the G = 1 frequency distribution of column densities f(N(Si+3)) had normalization k = (1.2+0.5/-0.4) x 10^-14 cm2 and slope alpha = -1.6+0.3/-0.3. Using the power-law model of f(N(Si+3)), we measured the Si+3 mass density relative to the critical density: Omega(Si+3) = (3.7+2.8/-1.7) x 10^-8 for 13 < log N(Si+3) < 15. From Monte Carlo sampling of the distributions, we estimated our value to be a factor of 4.8+3.0/-1.9 higher than the 2 < z < 4.5 <Omega(Si+3)>. From a simple linear fit to Omega(Si+3) over the age of the Universe, we estimated a slow and steady increase from z = 5.5 --> 0 with dOmega/dt_age = (0.61+/-0.23) x 10^-8 Gyr^-1. We compared our ionic ratios N(Si+3)/N(C+3) to a 2 < z < 4.5 sample and concluded, from survival analysis, that the two populations are similar, with median <N(Si+3)/N(C+3)> = 0.16.
We compare the star formation (SF) activity in cluster galaxies to the field from z=0.3-1.5 using $Herschel$ SPIRE 250$mu$m imaging. We utilize 274 clusters from the IRAC Shallow Cluster Survey (ISCS) selected as rest-frame near-infrared overdensitie s over the 9 square degree Bootes field . This analysis allows us to quantify the evolution of SF in clusters over a long redshift baseline without bias against active cluster systems. Using a stacking analysis, we determine the average star formation rates (SFRs) and specific-SFRs (SSFR=SFR/M$_{star}$) of stellar mass-limited (M>1.3x10$^{10}$ M$_{odot}$), statistical samples of cluster and field galaxies, probing both the star forming and quiescent populations. We find a clear indication that the average SF in cluster galaxies is evolving more rapidly than in the field, with field SF levels at z>1.2 in the cluster cores (r<0.5 Mpc), in good agreement with previous ISCS studies. By quantifying the SF in cluster and field galaxies as an exponential function of cosmic time, we determine that cluster galaxies are evolving ~2 times faster than the field. Additionally, we see enhanced SF above the field level at z~1.4 in the cluster outskirts (r>0.5 Mpc). These general trends in the cluster cores and outskirts are driven by the lower mass galaxies in our sample. Blue cluster galaxies have systematically lower SSFRs than blue field galaxies, but otherwise show no strong differential evolution with respect to the field over our redshift range. This suggests that the cluster environment is both suppressing the star formation in blue galaxies on long time-scales and rapidly transitioning some fraction of blue galaxies to the quiescent galaxy population on short time-scales. We argue that our results are consistent with both strangulation and ram pressure stripping acting in these clusters, with merger activity occurring in the cluster outskirts.
We present the first results from the 2mm Mapping Obscuration to Reionization (MORA) survey, the largest ALMA contiguous blank-field survey to-date with a total area of 184 sq. arcmin and the only at 2mm to search for dusty star-forming galaxies (DSF Gs). We use the 13 sources detected above 5sigma to estimate the first ALMA galaxy number counts at this wavelength. These number counts are then combined with the state-of-the-art galaxy number counts at 1.2mm and 3mm and with a backward evolution model to place constraints on the evolution of the IR luminosity function and dust-obscured star formation in the last 13 billion years. Our results suggest a steep redshift evolution on the space density of DSFGs and confirm the flattening of the IR luminosity function at faint luminosities, with a slope of $alpha_{LF} = -0.42^{+0.02}_{-0.04}$. We conclude that the dust-obscured component, which peaks at z=2-2.5, has dominated the cosmic history of star formation for the past ~12 billion years, back to z~4. At z=5, the dust-obscured star formation is estimated to be ~35% of the total star formation rate density and decreases to 25%-20% at z=6-7, implying a minor contribution of dust-enshrouded star formation in the first billion years of the Universe. With the dust-obscured star formation history constrained up to the end of the epoch of reionization, our results provide a benchmark to test galaxy formation models, to study the galaxy mass assembly history, and to understand the dust and metal enrichment of the Universe at early times.
We present an analysis of the levels and evolution of star formation activity in a representative sample of 30 massive galaxy clusters at 0.15<z<0.30 from the Local Cluster Substructure Survey (LoCuSS), combining wide-field Spitzer 24um data with ext ensive spectroscopy of cluster members. The specific-SFRs of massive (M>10^10 M_sun) star-forming cluster galaxies within r200 are found to be systematically 28% lower than their counterparts in the field at fixed stellar mass and redshift, a difference significant at the 8.7-sigma level. This is the unambiguous signature of star formation in most (and possibly all) massive star-forming galaxies being slowly quenched upon accretion into massive clusters, their SFRs declining exponentially on quenching time-scales in the range 0.7-2.0 Gyr. We measure the mid-infrared Butcher-Oemler effect over the redshift range 0.0-0.4, finding rapid evolution in the fraction (f_SF) of massive (M_K<-23.1) cluster galaxies within r200 with SFRs>3M_sun/yr, of the form f_SF (1+z)^7.6. We dissect the origins of the Butcher-Oemler effect, revealing it to be due to the combination of a ~3x decline in the mean specific-SFRs of star-forming cluster galaxies since z~0.3 with a ~1.5x decrease in number density. Two-thirds of this reduction in the specific-SFRs of star-forming cluster galaxies is due to the steady cosmic decline in the specific-SFRs among those field galaxies accreted into the clusters. The remaining one-third reflects an accelerated decline in the star formation activity of galaxies within clusters. The slow quenching of star-formation in cluster galaxies is consistent with a gradual shut down of star formation in infalling spiral galaxies as they interact with the intra-cluster medium via ram-pressure stripping or starvation mechanisms. We find no evidence for the build-up of cluster S0 bulges via major nuclear star-burst episodes.
141 - N. Bourne , L. Dunne , G. J. Bendo 2013
We present an analysis of CO molecular gas tracers in a sample of 500{mu}m-selected Herschel-ATLAS galaxies at z<0.05 (cz<14990km/s). Using 22-500{mu}m photometry from WISE, IRAS and Herschel, with HI data from the literature, we investigate correlat ions between warm and cold dust, and tracers of the gas in different phases. The correlation between global CO(3-2) line fluxes and FIR-submillimetre fluxes weakens with increasing IR wavelength ({lambda}>60{mu}m), as a result of colder dust being less strongly associated with dense gas. Conversely, CO(2-1) and HI line fluxes both appear to be better correlated with longer wavelengths, suggesting that cold dust is more strongly associated with diffuse atomic and molecular gas phases, consistent with it being at least partially heated by radiation from old stellar populations. The increased scatter at long wavelengths implies that submillimetre fluxes are a poorer tracer of SFR. Fluxes at 22 and 60{mu}m are also better correlated with diffuse gas tracers than dense CO(3-2), probably due to very-small-grain emission in the diffuse interstellar medium, which is not correlated with SFR. The FIR/CO luminosity ratio and the dust mass/CO luminosity ratio both decrease with increasing luminosity, as a result of either correlations between mass and metallicity (changing CO/H2) or between CO luminosity and excitation [changing CO(3-2)/CO(1-0)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا