ترغب بنشر مسار تعليمي؟ اضغط هنا

Homodyne extimation of quantum states purity by exploiting covariant uncertainty relation

123   0   0.0 ( 0 )
 نشر من قبل Alberto Porzio
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally verify uncertainty relations for mixed states in the tomographic representation by measuring the radiation field tomograms, i.e. homodyne distributions. Thermal states of single-mode radiation field are discussed in details as paradigm of mixed quantum state. By considering the connection between generalised uncertainty relations and optical tomograms is seen that the purity of the states can be retrieved by statistical analysis of the homodyne data. The purity parameter assumes a relevant role in quantum information where the effective fidelities of protocols depend critically on the purity of the information carrier states. In this contest the homodyne detector becomes an easy to handle purity-meter for the state on-line with a running quantum information protocol.



قيم البحث

اقرأ أيضاً

Bounded uncertainty relations provide the minimum value of the uncertainty assuming some additional information on the state. We derive analytically an uncertainty relation bounded by a pair of constraints, those of purity and Gaussianity. In a limit ing case this uncertainty relation reproduces the purity-bounded derived by V I Manko and V V Dodonov and the Gaussianity-bounded one [Phys. Rev. A 86, 030102R (2012)].
126 - Anindya Biswas , Aditi Sen De , 2013
Fidelity plays an important role in measuring distances between pairs of quantum states, of single as well as multiparty systems. Based on the concept of fidelity, we introduce a physical quantity, shared purity, for arbitrary pure or mixed quantum s tates of shared systems of an arbitrary number of parties in arbitrary dimensions. We find that it is different from quantum correlations. However, we prove that a maximal shared purity between two parties excludes any shared purity of these parties with a third party, thus ensuring its quantum nature. Moreover, we show that all generalized GHZ states are monogamous, while all generalized W states are non-monogamous with respect to this measure. We apply the quantity to investigate the quantum XY spin models, and observe that it can faithfully detect the quantum phase transition present in these models. We perform a finite-size scaling analysis and find the scaling exponent for this quantity.
120 - Arun Kumar Pati 1999
The quantum states which satisfy the equality in the generalised uncertainty relation are called intelligent states. We prove the existence of intelligent states for the Anandan-Aharonov uncertainty relation based on the geometry of the quantum state space for arbitrary parametric evolutions of quantum states when the initial and final states are non-orthogonal.
160 - A. Mandilara , N. J. Cerf 2012
We re-derive the Schr{o}dinger-Robertson uncertainty principle for the position and momentum of a quantum particle. Our derivation does not directly employ commutation relations, but works by reduction to an eigenvalue problem related to the harmonic oscillator, which can then be further exploited to find a larger class of constrained uncertainty relations. We derive an uncertainty relation under the constraint of a fixed degree of Gaussianity and prove that, remarkably, it is saturated by all eigenstates of the harmonic oscillator. This goes beyond the common knowledge that the (Gaussian) ground state of the harmonic oscillator saturates the uncertainty relation.
In this paper, the purity of quantum states is applied to probe chaotic dissipative dynamics. To achieve this goal, a comparative analysis of regular and chaotic regimes of nonlinear dissipative oscillator (NDO) are performed on the base of excitatio n number and the purity of oscillatory states. While the chaotic regime is identified in our semiclassical approach by means of strange attractors in Poincare section and with the Lyapunov exponent, the state in the quantum regime is treated via the Wigner function. Specifically, interesting quantum purity effects that accompany the chaotic dynamics are elucidated in this paper for NDO system driven by either: (i) a time-modulated field, or (ii) a sequence of pulses with Gaussian time-dependent envelopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا