ﻻ يوجد ملخص باللغة العربية
We develop a numerical formulation to calculate the classical motion of charges in strong electromagnetic fields, such as those occurring in high-intensity laser beams. By reformulating the dynamics in terms of SL(2,C) matrices representing the Lorentz group, our formulation maintains explicit covariance, in particular the mass-shell condition. Considering an electromagnetic plane wave field where the analytic solution is known as a test case, we demonstrate the effectiveness of the method for solving both the Lorentz force and the Landau-Lifshitz equations. The latter, a second order reduction of the Lorentz-Abraham-Dirac equation, describes radiation reaction without the usual pathologies.
Abraham Lorentz (AL) formula of Radiation Reaction and its relativistic generalization, Abraham Lorentz Dirac (ALD) formula, are valid only for periodic (accelerated) motion of a charged particle, where the particle returns back to its original state
We discuss radiation reaction effects on charges propagating in ultra-intense laser fields. Our analysis is based on an analytic solution of the Landau-Lifshitz equation. We suggest to measure radiation reaction in terms of a symmetry breaking parame
Cherenkov radiation (CR) generated by a charge moving through a hollow conical target made of dielectric material is analyzed. We consider two cases: the charge moves from the base of the cone to its top (``straight cone) or from the top to the base
We give an overview of the worldline numerics technique, and discuss the parallel CUDA implementation of a worldline numerics algorithm. In the worldline numerics technique, we wish to generate an ensemble of representative closed-loop particle traje
Finding the exact equation of motion for a moving charged particle is one of the oldest open problems in physics. The problem originates in the emission of radiation by an accelerated charge, which must result with a loss of energy and recoil of the