ﻻ يوجد ملخص باللغة العربية
We present in this study a mapping of the optical turbulence (OT) above different astronomical sites. The mesoscale model Meso-NH was used together with the Astro-Meso-Nh package and a set of diagnostic tools allowing for a full 3D investigation of the Cn2. The diagnostics implemented in the Astro-Meso-Nh, allowing for a full 3D investigation of the OT structure in a volumetric space above different sites, are presented. To illustrate the different diagnostics and their potentialities, we investigated one night and looked at instantaneous fields of meteorologic and astroclimatic parameters. To show the potentialities of this tool for applications in an Observatory we ran the model above sites with very different OT distributions: the antarctic plateau (Dome C, Dome A, South Pole) and a mid-latitude site (Mt. Graham, Arizona). We put particular emphasis on the 2D maps of integrated astroclimatic parameters (seeing, isoplanatic angles) calculated in different slices at different heights in the troposhere. This is an useful tool of prediction and investigation of the turbulence structure. It can support the optimization of the AO, GLAO and MCAO systems running at the focus of the ground-based telescopes.From this studies it emerges that the astronomical sites clearly present different OT behaviors. Besides, our tool allowed us for discriminating these sites.
Wide Field Adaptive Optics (WFAO) systems represent the more sophisticated AO systems available today at large telescopes. A critical aspect for these WFAO systems in order to deliver an optimised performance is the knowledge of the vertical spatiote
We present a method to constrain galaxy parameters directly from three-dimensional data cubes. The algorithm compares directly the data with a parametric model mapped in $x,y,lambda$ coordinates. It uses the spectral lines-spread function (LSF) and t
The Adaptive Optics Facility (AOF) project envisages transforming one of the VLT units into an adaptive telescope and providing its ESO (European Southern Observatory) second generation instruments with turbulence corrected wavefronts. For MUSE and H
The Hot Universe Baryon Surveyor (HUBS) mission is proposed to study missing baryons in the universe. Unlike dark matter, baryonic matter is made of elements in the periodic table, and can be directly observed through the electromagnetic signals that
Dome A, Antarctica has been thought to be one of the best astronomical sites on the earth since decades ago. From it was first visited by astronomers in 2008, dozens of facilities for astronomical observation and site testing were deployed. Due to it