ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Period Evolution of Recycled Pulsar in Accreting Binary

95   0   0.0 ( 0 )
 نشر من قبل Chengmin Zhang
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the spin-period evolutions of recycled pulsars in binary accreting systems. Taking both the accretion induced field decay and spin-up into consideration, we calculate their spin-period evolutions influenced by the initial magnetic-field strengths, initial spin-periods and accretion rates, respectively. The results indicate that the minimum spin-period (or maximum spin frequency) of millisecond pulsar (MSP) is independent of the initial conditions and accretion rate when the neutron star (NS) accretes $sim> 0.2ms$. The accretion torque with the fastness parameter and gravitational wave (GW) radiation torque may be responsible for the formation of the minimum spin-period (maximum spin frequency). The fastest spin frequency (716 Hz) of MSP can be inferred to associate with a critical fastness parameter about $omega_{c}=0.55$. Furthermore, the comparisons with the observational data are presented in the field-period ($B-P$) diagram.



قيم البحث

اقرأ أيضاً

127 - A. Patruno 2012
The large majority of neutron stars (NSs) in low mass X-ray binaries (LMXBs) have never shown detectable pulsations despite several decades of intense monitoring. The reason for this remains an unsolved problem that hampers our ability to measure the spin frequency of most accreting NSs. The accreting millisecond X-ray pulsar (AMXP) HETE J1900.1--2455 is an intermittent pulsar that exhibited pulsations at about 377 Hz for the first 2 months and then turned in a non-pulsating source. Understanding why this happened might help to understand why most LMXBs do not pulsate. We present a 7 year long coherent timing analysis of data taken with the Rossi X-ray Timing Explorer. We discover new sporadic pulsations that are detected on a baseline of about 2.5 years. We find that the pulse phases anti-correlate with the X-ray flux as previously discovered in other AMXPs. We place stringent upper limits of 0.05% rms on the pulsed fraction when pulsations are not detected and identify an enigmatic pulse phase drift of ~180 degrees in coincidence with the first disappearance of pulsations. Thanks to the new pulsations we measure a long term spin frequency derivative whose strength decays exponentially with time. We interpret this phenomenon as evidence of magnetic field burial.
We report the discovery and the results of follow-up timing observations of PSR J2045+3633 and PSR J2053+4650, two binary pulsars found in the Northern High Time Resolution Universe pulsar survey being carried out with the Effelsberg radio telescope. Having spin periods of 31.7 ms and 12.6 ms respectively, and both with massive white dwarf companions, $M_{c}, > , 0.8, M_{odot}$, the pulsars can be classified as mildly recycled. PSR J2045+3633 is remarkable due to its orbital period (32.3 days) and eccentricity $e, = , 0.01721244(5)$ which is among the largest ever measured for this class. After almost two years of timing the large eccentricity has allowed the measurement of the rate of advance of periastron at the 5-$sigma$ level, 0.0010(2)$^circ~rm yr^{-1}$. Combining this with a detection of the orthometric amplitude of the Shapiro delay, we obtained the following constraints on the component masses (within general relativity): $M_{p}, = , 1.33^{+0.30}_{-0.28}, M_{odot}$, and $M_{c}, = , 0.94^{+0.14}_{-0.13}, M_{odot}$. PSR J2053+4650 has a 2.45-day circular orbit inclined to the plane of the sky at an angle $i, = , 85.0^{+0.8}_{-0.9},{^circ}$. In this nearly edge-on case the masses can be obtained from the Shapiro delay alone. Our timing observations resulted in a significant detection of this effect giving: $M_{p}, = , 1.40^{+0.21}_{-0.18}, M_{odot}$, and $M_{c}, = , 0.86^{+0.07}_{-0.06}, M_{odot}$.
We report on the discovery and the timing analysis of the first eclipsing accretion-powered millisecond X-ray pulsar (AMXP): SWIFT J1749.4-2807. The neutron star rotates at a frequency of ~517.9 Hz and is in a binary system with an orbital period of 8.8 hrs and a projected semi-major axis of ~1.90 lt-s. Assuming a neutron star between 0.8 and 2.2 M_o and using the mass function of the system and the eclipse half-angle, we constrain the mass of the companion and the inclination of the system to be in the ~0.46-0.81 M_o and $sim74.4^o-77.3^o range, respectively. To date, this is the tightest constraint on the orbital inclination of any AMXP. As in other AMXPs, the pulse profile shows harmonic content up to the 3rd overtone. However, this is the first AMXP to show a 1st overtone with rms amplitudes between ~6% and ~23%, which is the strongest ever seen, and which can be more than two times stronger than the fundamental. The fact that SWIFT J1749.4-2807 is an eclipsing system which shows uncommonly strong harmonic content suggests that it might be the best source to date to set constraints on neutron star properties including compactness and geometry.
271 - A. Patruno 2016
The accreting millisecond pulsars IGR J00291+5934 and SAX J1808.4-3658 are two compact binaries with very similar orbital parameters. The latter has been observed to evolve on a very short timescale of ~70 Myr which is more than an order of magnitude shorter than expected. There is an ongoing debate on the possibility that the pulsar spin-down power ablates the companion generating large amount of mass-loss in the system. It is interesting therefore to study whether IGR J00291+5934 does show a similar behaviour as its twin system SAX J1808.4-3658. In this work we present the first measurement of the orbital period derivative of IGR J00291+5934. By using XMM-Newton data recorded during the 2015 outburst and adding the previous results of the 2004 and 2008 outbursts, we are able to measure a 90% confidence level upper limit for the orbital period derivative of -5x10^-13<Pb_dot<6x10^-13. This implies that the binary is evolving on a timescale longer than ~0.5 Gyr, which is compatible with the expected timescale of mass transfer driven by angular momentum loss via gravitational radiation. We discuss the scenario in which the power loss from magnetic dipole radiation of the neutron star is hitting the companion star. If this model is applied to SAX J1808.4-3658 then the difference in orbital behavior can be ascribed to a different efficiency for the conversion of the spin-down power into energetic relativistic pulsar wind and X-ray/gamma-ray radiation for the two pulsars, with IGR J00291+5934 requiring an extraordinarily low efficiency of less than 5% to explain the observations. Alternatively, the donor in IGR J00291+5934 is weakly/not magnetized which would suppress the possibility of generating mass-quadrupole variations.
121 - N.R. Ikhsanov , Yu.S. Likh , 2014
Spin evolution of X-ray pulsars in High Mass X-ray Binaries (HMXBs) is discussed under various assumptions about the geometry and physical parameters of the accretion flow. The torque applied to the neutron star from the accretion flow and equilibriu m period of the pulsars are evaluated. We show that the observed spin evolution of the pulsars can be explained in terms of a scenario in which the neutron star accretes material from a magnetized stellar wind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا