ﻻ يوجد ملخص باللغة العربية
The occurence of shear bands in a complex fluid is generally understood as resulting from a structural evolution of the material under shear, which leads (from a theoretical perspective) to a non-monotonic stationnary flow curve related to the coexistence of different states of the material under shear. In this paper we present a scenario for shear-banding in a particular class of complex fluids, namely foams and concentrated emulsions, which differs from other scenarii in two important ways. First, the appearance of shear bands is shown to be possible both without any intrinsic physical evolution of the material (e.g. via a parameter coupled to the flow such as concentration or entanglements) and without any finite critical shear rate below which the flow does not remain stationary and homogeneous. Secondly, the appearance of shear bands depends on the initial conditions, i.e., the preparation of the material. In other words, it is history dependent. This behaviour relies on the tensorial character of the underlying model (2D or 3D) and is triggered by an initially inhomogeneous strain distribution in the material. The shear rate displays a discontinuity at the band boundary, whose amplitude is history dependent and thus depends on the sample preparation.
We study a simple scalar constitutive equation for a shear-thickening material at zero Reynolds number, in which the shear stress sigma is driven at a constant shear rate dotgamma and relaxes by two parallel decay processes: a nonlinear decay at a no
We study the strain response to steady imposed stress in a spatially homogeneous, scalar model for shear thickening, in which the local rate of yielding Gamma(l) of mesoscopic `elastic elements is not monotonic in the local strain l. Despite this, th
We assess the possibility of shear banding of semidilute rod-like colloidal suspensions under steady shear ow very close to the isotropic-nematic spinodal, using a combination of rheology, small angle neutron scattering, and laser Doppler velocimetry
We present an analytical study of a toy model for shear banding, without normal stresses, which uses a piecewise linear approximation to the flow curve (shear stress as a function of shear rate). This model exhibits multiple stationary states, one of
Dynamic recrystallization (DRX) is often observed in conjunction with adiabatic shear banding (ASB) in polycrystalline materials. The recrystallized nanograins in the shear band have few dislocations compared to the material outside of the shear band