ﻻ يوجد ملخص باللغة العربية
A possibility to describe magnetism in the iron pnictide parent compounds in terms of the two-dimensional frustrated Heisenberg $J_1$-$J_2$ model has been actively discussed recently. However, recent neutron scattering data has shown that the pnictides have a relatively large spin wave dispersion in the direction perpendicular to the planes. This indicates that the third dimension is very important. Motivated by this observation we study the $J_1$-$J_2$-$J_c$ model that is the three dimensional generalization of the $J_1$-$J_2$ Heisenberg model for $S = 1/2$ and S = 1. Using self-consistent spin wave theory we present a detailed description of the staggered magnetization and magnetic excitations in the collinear state. We find that the introduction of the interlayer coupling $J_c$ suppresses the quantum fluctuations and strengthens the long range ordering. In the $J_1$-$J_2$-$J_c$ model, we find two qualitatively distinct scenarios for how the collinear phase becomes unstable upon increasing $J_1$. Either the magnetization or one of the spin wave velocities vanishes. For $S = 1/2$ renormalization due to quantum fluctuations is significantly stronger than for S=1, in particular close to the quantum phase transition. Our findings for the $J_1$-$J_2$-$J_c$ model are of general theoretical interest, however, the results show that it is unlikely that the model is relevant to undoped pnictides.
We study the quantum phase diagram and excitation spectrum of the frustrated $J_1$-$J_2$ spin-1/2 Heisenberg Hamiltonian. A hierarchical mean-field approach, at the heart of which lies the idea of identifying {it relevant} degrees of freedom, is deve
We investigate the magnetic properties of LiYbO$_2$, containing a three-dimensionally frustrated, diamond-like lattice via neutron scattering, magnetization, and heat capacity measurements. The stretched diamond network of Yb$^{3+}$ ions in LiYbO$_2$
Strongly correlated systems with geometric frustrations can host the emergent phases of matter with unconventional properties. Here, we study the spin $S = 1$ Heisenberg model on the honeycomb lattice with the antiferromagnetic first- ($J_1$) and sec
We assess the ground-state phase diagram of the $J_1$-$J_2$ Heisenberg model on the kagome lattice by employing Gutzwiller-projected fermionic wave functions. Within this framework, different states can be represented, defined by distinct unprojected
We investigate the Hubbard model on a two-dimensional square lattice by the perturbation expansion to the fourth order in the on-site Coulomb repulsion U. Numerically calculating all diagrams up to the fourth order in self-energy, we examine the conv