ترغب بنشر مسار تعليمي؟ اضغط هنا

The Supernova Legacy Survey 3-year sample: Type Ia Supernovae photometric distances and cosmological constraints

106   0   0.0 ( 0 )
 نشر من قبل Julien Guy
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. A flat LambdaCDM cosmological fit to 231 SNLS high redshift Type Ia supernovae alone gives Omega_M = 0.211 +/- 0.034(stat) +/- 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of +/- 0.026 on Omega_M. No clear evidence is found for a possible evolution of the slope (beta) of the colour-luminosity relation with redshift.



قيم البحث

اقرأ أيضاً

The rate evolution of subluminous Type Ia Supernovae is presented using data from the Supernova Legacy Survey. This sub-sample represents the faint and rapidly-declining light-curves of the observed supernova Ia (SN Ia) population here defined by low stretch values (s<0.8). Up to redshift z=0.6, we find 18 photometrically-identified subluminous SNe Ia, of which six have spectroscopic redshift (and three are spectroscopically-confirmed SNe Ia). The evolution of the subluminous volumetric rate is constant or slightly decreasing with redshift, in contrast to the increasing SN Ia rate found for the normal stretch population, although a rising behaviour is not conclusively ruled out. The subluminous sample is mainly found in early-type galaxies with little or no star formation, so that the rate evolution is consistent with a galactic mass dependent behavior: $r(z)=Atimes M_g$, with $A=(1.1pm0.3)times10^{-14}$ SNe per year and solar mass.
GMOS optical long-slit spectroscopy at the Gemini-North telescope was used to classify targets from the Supernova Legacy Survey (SNLS) from July 2005 and May 2006 - May 2008. During this time, 95 objects were observed. Where possible the objects reds hifts (z) were measured from narrow emission or absorption features in the host galaxy spectrum, otherwise they were measured from the broader supernova features. We present spectra of 68 confirmed or probable SNe Ia from SNLS with redshifts in the range 0.17 leq z leq 1.02. In combination with earlier SNLS Gemini and VLT spectra, we used these new observations to measure pseudo-equivalent widths (EWs) of three spectral features - CaII H&K, SiII and MgII - in 144 objects and compared them to the EWs of low-redshift SNe Ia from a sample drawn from the literature. No signs of changes with z are seen for the CaII H&K and MgII features. Systematically lower EW SiII is seen at high redshift, but this can be explained by a change in demographics of the SNe Ia population within a two-component model combined with an observed correlation between EW SiII and photometric lightcurve stretch.
We present a measurement of the volumetric Type Ia supernova (SN Ia) rate (SNR_Ia) as a function of redshift for the first four years of data from the Canada-France-Hawaii Telescope (CFHT) Supernova Legacy Survey (SNLS). This analysis includes 286 sp ectroscopically confirmed and more than 400 additional photometrically identified SNe Ia within the redshift range 0.1<z<1.1. The volumetric SNR_Ia evolution is consistent with a rise to z~1.0 that follows a power-law of the form (1+z)^alpha, with alpha=2.11+/-0.28. This evolutionary trend in the SNLS rates is slightly shallower than that of the cosmic star-formation history over the same redshift range. We combine the SNLS rate measurements with those from other surveys that complement the SNLS redshift range, and fit various simple SN Ia delay-time distribution (DTD) models to the combined data. A simple power-law model for the DTD (i.e., proportional to t^-beta) yields values from beta=0.98+/-0.05 to beta=1.15+/-0.08 depending on the parameterization of the cosmic star formation history. A two-component model, where SNR_Ia is dependent on stellar mass (Mstellar) and star formation rate (SFR) as SNR_Ia(z)=AxMstellar(z) + BxSFR(z), yields the coefficients A=1.9+/-0.1 SNe/yr/M_solar and B=3.3+/-0.2 SNe/yr/(M_solar/yr). More general two-component models also fit the data well, but single Gaussian or exponential DTDs provide significantly poorer matches. Finally, we split the SNLS sample into two populations by the light curve width (stretch), and show that the general behavior in the rates of faster-declining SNe Ia (0.8<s<1.0) is similar, within our measurement errors, to that of the slower objects (1.0<s<1.3) out to z~0.8.
The Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS) has created a large homogeneous database of intermediate redshift (0.2 < z < 1.0) type Ia supernovae (SNe Ia). The SNLS team has shown that correlations exist between SN Ia rates, prop erties, and host galaxy star formation rates. The SNLS SN Ia database has now been combined with a photometric redshift galaxy catalog and an optical galaxy cluster catalog to investigate the possible influence of galaxy clustering on the SN Ia rate, over and above the expected effect due to the dependence of SFR on clustering through the morphology-density relation. We identify three cluster SNe Ia, plus three additional possible cluster SNe Ia, and find the SN Ia rate per unit mass in clusters at intermediate redshifts is consistent with the rate per unit mass in field early-type galaxies and the SN Ia cluster rate from low redshift cluster targeted surveys. We also find the number of SNe Ia in cluster environments to be within a factor of two of expectations from the two component SNIa rate model.
We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-typ e host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always <~ 2 sigma. Rates in these subsets are consistent with predictions of the two component A+B SN Ia rate model. Since infrared properties of radio SN Ia hosts indicate dust obscured star formation, we incorporate infrared star formation rates into the A+B model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions for SNe Ia, although other delay time distributions cannot be ruled out based on our data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا