ترغب بنشر مسار تعليمي؟ اضغط هنا

Lithium abundance in the globular cluster M4: from the Turn-Off to the RGB Bump

168   0   0.0 ( 0 )
 نشر من قبل Alessio Mucciarelli
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Mucciarelli




اسأل ChatGPT حول البحث

We present Li and Fe abundances for 87 stars in the GC M4,obtained with GIRAFFE high-resolution spectra. The targets range from the TO up to the RGB Bump. The Li abundance in the TO stars is uniform, with an average value A(Li)=2.30+-0.02 dex,consistent with the upper envelope of Li content measured in other GCs and in the Halo stars,confirming also for M4 the discrepancy with the primordial Li abundance predicted by WMAP+BBNS. The iron content of M4 is [Fe/H]=-1.10+-0.01 dex, with no systematic offsets between dwarf and giant stars.The behaviour of the Li and Fe abundance along the entire evolutionary path is incompatible with models with atomic diffusion, pointing out that an additional turbulent mixing below the convective region needs to be taken into account,able to inhibit the atomic diffusion.The measured A(Li) and its homogeneity in the TO stars allow to put strong constraints on the shape of the Li profile inside the M4 TO stars. The global behaviour of A(Li) with T_{eff} can be reproduced with different pristine Li abundances, depending on the kind of adopted turbulent mixing.One cannot reproduce the global trend starting from the WMAP+BBNS A(Li) and adopting the turbulent mixing described by Richard et al.(2005) with the same efficiency used by Korn et al.(2006) to explain the Li content in NGC6397. Such a solution is not able to well reproduce simultaneously the Li abundance observed in TO and RGB stars.Otherwise, theWMAP+BBNS A(Li) can be reproduced assuming a more efficient turbulent mixing able to reach deeper stellar regions where the Li is burned. The cosmological Li discrepancy cannot be easily solved with the present,poor understanding of the turbulence in the stellar interiors and a future effort to well understand the true nature of this non-canonical process is needed.



قيم البحث

اقرأ أيضاً

We aim to determine abundances of Li, O and Na in a sample of of 110 turn-off (TO) stars, in order to study the evolution of light elements in this cluster and to put our results in perspective with observations of other globular and open clusters, a s well as with field stars. We use medium resolution spectra obtained with the GIRAFFE spectrograph at the ESO 8.2m Kueyen VLT telescope and use state of the art 1D model atmospheres and NLTE line transfer to determine the abundances. We also employ CO5BOLD hydrodynamical simulations to assess the impact of stellar granulation on the line formation and inferred abundances. Our results confirm the existence of Na-O abundance anti-correlation and hint towards a possible Li-O anti-correlation in the TO stars of 47 Tuc. We find no convincing evidence supporting the existence of Li-Na correlation. The obtained 3D NLTE mean lithium abundance in a sample of 94 TO stars where Li lines were detected reliably, $langle A({rm Li})_{rm 3D~NLTE}rangle = 1.78 pm 0.18$ dex, appears to be significantly lower than what is observed in other globular clusters. At the same time, star-to-star spread in Li abundance is also larger than seen in other clusters. The highest Li abundance observed in 47 Tuc is about 0.1 dex lower than the lowest Li abundance observed among the un-depleted stars of the metal-poor open cluster NGC 2243. The lithium abundances in 47 Tuc, when put into context with observations in other clusters and field stars, suggest that stars that are more metal-rich than [FeH] sim -1.0 experience significant lithium depletion during their lifetime on the main sequence, while the more metal-poor stars do not. Rather strikingly, our results suggest that initial lithium abundance with which the star was created may only depend on its age (the younger the star, the higher its Li content) and not on its metallicity.
177 - L. Monaco 2011
Context. The abundance inhomogeneities of light elements observed in Globular Clusters (GCs), and notably the ubiquitous Na-O anti-correlation, are generally interpreted as evidence that GCs comprise several generations of stars. There is an on-going debate as to the nature of the stars which produce the inhomogeneous elements, and investigating the behavior of several elements is a way to shed new light on this problem. Aims. We aim at investigating the Li and Na content of the GC M 4, that is known to have a well defined Na-O anti-correlation. Methods. We obtained moderate resolution (R=17 000-18 700) spectra for 91 main sequence (MS)/sub-giant branch stars of M 4 with the Giraffe spectrograph at the FLAMES/VLT ESO facility. Using model atmospheres analysis we measured lithium and sodium abundances. Results. We detect a weak Li-Na anti-correlation among un-evolved MS stars. One star in the sample, # 37934, shows the remarkably high lithium abundance A(Li)=2.87, compatible with current estimates of the primordial lithium abundance. Conclusions. The shallow slope found for the Li-Na anti-correlation suggests that lithium is produced in parallel to sodium. This evidence, coupled with its sodium-rich nature, suggests that the high lithium abundance of star # 37934 may originate by pollution from a previous generations of stars. The recent detection of a Li-rich dwarf of pollution origin in the globular cluster NGC 6397 may also point in this direction. Still, no clear cut evidence is available against a possible preservation of the primordial lithium abundance for star # 37934.
320 - L. Sbordone 2012
We discuss the current status of the sample of Lithium abundances in extremely metal poor (EMP) turn-off (TO) stars collected by our group, and compare it with the available literature results. In the last years, evidences have accumulated of a progr essive disruption of the Spite plateau in stars of extremely low metallicity. What appears to be a flat, thin plateau above [Fe/H]sim-2.8 turns, at lower metallicities, into a broader distribution for which the plateau level constitutes the upper limit, but more and more stars show lower Li abundances. The sample we have collected currently counts abundances or upper limits for 44 EMP TO stars between [Fe/H]=-2.5 and -3.5, plus the ultra-metal poor star SDSS J102915+172927 at [Fe/H]=-4.9. The meltdown of the Spite plateau is quite evident and, at the current status of the sample, does not appear to be restricted to the cool end of the effective temperature distribution. SDSS J102915+172927 displays an extreme Li depletion that contrasts with its otherwise quite ordinary set of [X/Fe] ratios.
Asymptotic giant branch (AGB) stars play a key role in the enrichment of galaxies with heavy elements. Due to their large amplitude variability, the measurement of elemental abundances is a highly challenging task that has not been solved in a satisf actory way yet. Following our previous work we use hydrostatic and dynamical model atmospheres to simulate observed high-resolution near-infrared spectra of 12 variable and non-variable red giants in the globular cluster 47 Tuc. The 47 Tuc red giants are independently well-characterized in important parameters (mass, metallicity, luminosity). The principal aim was to compare synthetic spectra based on the dynamical models with observational spectra of 47 Tuc variables. Assuming that the abundances are unchanged on the upper giant branch in these low-mass stars, our goal is to estimate the impact of atmospheric dynamics on the abundance determination. We present new measurements of the C/O and 12C/13C ratio for 5 non-variable red giants in 47Tuc. The equivalent widths measured for our 7 variable stars strongly differ from the non-variable stars and cannot be reproduced by either hydrostatic or dynamical model atmospheres. Nevertheless, the dynamical models fit the observed spectra of long-period variables much better than any hydrostatic model. For some spectral features, the variations in the line intensities predicted by dynamical models over a pulsation cycle give similar values as a sequence of hydrostatic models with varying temperature and constant surface gravity.
135 - Inese I. Ivans 1999
We present a chemical composition analysis of 36 giants in the nearby mildy metal-poor (<[Fe/H]> = -1.18) CN-bimodal globular cluster M4. Confronted with a cluster that has large and variable interstellar extinction across the cluster face, we combin ed traditional spectroscopic abundance methods with modifications to line-depth ratio techniques to determine the atmospheric parameters of our stars. We derive a total-to-selective extinction ratio of 3.4 and an average <E(B-V)> reddening of 0.33 which is significantly lower than that estimated by using the dust maps made by Schlegel et al. (1998). Abundance ratios for Sc, Ti, V, Ni, & Eu are typical of halo field and cluster stars. However, Si, Al, Ba, & La are overabundant with respect to what is seen in other globular clusters of similar metallicity. Superimposed on the primordial abundance distribution is evidence for the existence of proton-capture synthesis. We recover some of the C, N, O, Na, Mg, & Al abundance swings and correlations found in other more metal-poor globular clusters but the range of variation is muted. The Al enhancements appear to be from the destruction of 25,26Mg, not 24Mg. The C+N+O abundance sum is constant to within the observational errors, and agrees with the C+N+O total that might be expected for M4 stars at birth. The M4 AGB stars have C,N,O abundances that show less evidence for proton- capture nucleosynthesis than is found in the less-evolved stars of the RGB. Deeply-mixed stars of the RGB, subsequent to the helium core flash, might take up residence on the blue end of the HB, and thus fail to evolve back to the AGB but reasons for skepticism concerning this scenario are noted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا