ﻻ يوجد ملخص باللغة العربية
We propose a method to split the ground state of an attractively interacting atomic Bose-Einstein condensate into two bright solitary waves with controlled relative phase and velocity. We analyze the stability of these waves against their subsequent re-collisions at the center of a cylindrically symmetric, prolate harmonic trap as a function of relative phase, velocity, and trap anisotropy. We show that the collisional stability is strongly dependent on relative phase at low velocity, and we identify previously unobserved oscillations in the collisional stability as a function of the trap anisotropy. An experimental implementation of our method would determine the validity of the mean field description of bright solitary waves, and could prove an important step towards atom interferometry experiments involving bright solitary waves.
A study of bright matter-wave solitons of a cesium Bose-Einstein condensate (BEC) is presented. Production of a single soliton is demonstrated and dependence of soliton atom number on the interatomic interaction is investigated. Formation of soliton
We consider the ground state of an attractively-interacting atomic Bose-Einstein condensate in a prolate, cylindrically symmetric harmonic trap. If a true quasi-one-dimensional limit is realized, then for sufficiently weak axial trapping this ground
Motivated by recent experiments, we model the dynamics of bright solitons formed by cold gases in quasi-1D traps. A dynamical variational ansatz captures the far-from equilibrium excitations of these solitons. Due to a separation of scales, the radia
A vortex-bright soliton can precess around a fix point. Here, we find numerically that the fixed point and the associated precessional orbits can be shifted by applying a constant driving force on the bright component, the displacement is proportiona
We use an effective one-dimensional Gross-Pitaevskii equation to study bright matter-wave solitons held in a tightly confining toroidal trapping potential, in a rotating frame of reference, as they are split and recombined on narrow barrier potential