ترغب بنشر مسار تعليمي؟ اضغط هنا

The global dust SED: Tracing the nature and evolution of dust with DustEM

252   0   0.0 ( 0 )
 نشر من قبل Compiegne Mathieu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Planck and Herschel missions are currently measuring the farIR-mm emission of dust, which combined with existing IR data, will for the first time provide the full SED of the galactic ISM dust emission with an unprecedented sensitivity and angular resolution. It will allow a systematic study of the dust evolution processes that affect the SED. Here we present a versatile numerical tool, DustEM, that predicts the emission and extinction of dust given their size distribution and their optical and thermal properties. In order to model dust evolution, DustEM has been designed to deal with a variety of grain types, structures and size distributions and to be able to easily include new dust physics. We use DustEM to model the dust SED and extinction in the diffuse interstellar medium at high-galactic latitude (DHGL), a natural reference SED. We present a coherent set of observations for the DHGL SED. The dust components in our DHGL model are (i) PAHs, (ii) amorphous carbon and (iii) amorphous silicates. We use amorphous carbon dust, rather than graphite, because it better explains the observed high abundances of gas-phase carbon in shocked regions of the interstellar medium. Using the DustEM model, we illustrate how, in the optically thin limit, the IRAS/Planck HFI (and likewise Spitzer/Herschel for smaller spatial scales) photometric band ratios of the dust SED can disentangle the influence of the exciting radiation field intensity and constrain the abundance of small grains relative to the larger grains. We also discuss the contributions of the different grain populations to the IRAS, Planck and Herschel channels. Such information is required to enable a study of the evolution of dust as well as to systematically extract the dust thermal emission from CMB data and to analyze the emission in the Planck polarized channels. The DustEM code described in this paper is publically available.



قيم البحث

اقرأ أيضاً

The Spitzer GLIMPSE and MIPSGAL surveys have revealed a wealth of details of the Galactic plane. We use them to study the energetics and dust properties of M16, one of the best known SFR. We present MIPSGAL observations of M16 at 24 and 70 $mu$m and combine them with previous IR data. The MIR image shows a shell inside the molecular borders of the nebula. The morphologies at 24 and 70 $mu$m are different, and its color ratio is unusually warm. The FIR image resembles the one at 8 $mu$m that enhances the molecular cloud. We measure IR SEDs within the shell and the PDRs. We use the DUSTEM model to fit the SEDs and constrain dust temperature, dust size distribution, and ISRF intensity relative to that provided by the star cluster NGC6611. Within the PDRs, the dust temperature, the dust size distribution, and the ISRF intensity are in agreement with expectations. Within the shell, the dust is hotter and an ISRF larger than that provided by NGC6611 is required. We quantify two solutions. (1) The size distribution of the dust in the shell is not that of interstellar dust. (2) The dust emission arises from a hot plasma where UV and collisions with electrons contribute to the heating. We suggest two interpretations for the shell. (1) The shell matter is supplied by photo-evaporative flows arising from dense gas exposed to ionized radiation. The flows renew the shell matter as it is pushed by the stellar winds. Within this scenario, we conclude that massive SFR such as M16 have a major impact on the carbon dust size distribution. The grinding of the carbon dust could result from shattering in collisions within shocks driven by the interaction between the winds and the shell. (2) We consider a scenario where the shell is a SNR. We would be witnessing a specific time in the evolution of the SNR where the plasma pressure and temperature would be such that the SNR cools through dust emission.
Our current knowledge of star formation and accretion luminosity at high-redshift (z>3-4), as well as the possible connections between them, relies mostly on observations in the rest-frame ultraviolet (UV), which are strongly affected by dust obscura tion. Due to the lack of sensitivity of past and current infrared (IR) instrumentation, so far it has not been possible to get a glimpse into the early phases of the dust-obscured Universe. Among the next generation of IR observatories, SPICA, observing in the 12-350 micron range, will be the only facility that can enable us to make the required leap forward in understanding the obscured star-formation rate and black-hole accretion rate densities (SFRD and BHARD, respectively) with respect to what Spitzer and Herschel achieved in the mid- and far-IR at z<3. In particular, SPICA will have the unique ability to trace the evolution of the obscured SFRD and BHARD over cosmic time, from the peak of their activity back to the reionisation epoch (i.e., 3<z<6-7), where its predecessors had severe limitations. Here we discuss the potential of both deep and shallow photometric surveys performed with the SPICA mid-IR instrument (SMI), enabled by the very low level of impact of dust obscuration in a band centred at 34 micron. These unique unbiased photometric surveys that SPICA will perform will be followed up by observations both with the SPICA spectrometers and with other facilities at shorter and longer wavelengths, with the aim to fully characterise the evolution of AGNs and star-forming galaxies after re-ionisation.
119 - W. F. Thi 2013
Circumstellar disc evolution is paramount for the understanding of planet formation. The GASPS program aims at determining the circumstellar gas and solid mass around ~250 pre-main-sequence Herbig Ae and TTauri stars. We aim to understand the origin and nature of the circumstellar matter orbiting 51 Oph, a young (<1 Myr) luminous B9.5 star. We obtained continuum and line observations with the PACS instrument on board the Herschel Space Observatory and continuum data at 1.2 mm with the IRAM 30m telescope. The SED and line fluxes were modelled using the physico-chemo radiative transfer code ProDiMo. We detected a strong emission by OI at 63 microns using the Herschel Space Observatory. The [OI] emission at 145 microns, the [CII] emission at 158 microns, the high-J CO emissions, and the warm water emissions were not detected. Continuum emission was detected at 1.2 mm. The continuum from the near- to the far-infrared and the [OI] emission are well explained by the emission from a compact hydrostatic disc model with a gas mass of 5E-6 MSun, 100 times that of the solid mass. However, this model fails to match the continuum millimeter flux, which hints at a cold outer disc with a mass in solids of 1E-6 MSun or free-free emission from a photoevaporative disc wind. This outer disc can either be devoid of gas and/or is to cold to emit in the [OI] line. A very flat extended disc model (Rout=400 AU) with a fixed vertical structure and dust settling matches all photometric points and most of the [O I] flux. The observations can be explained by an extended flat disc where dust grains have settled. However, a flat gas disc cannot be reproduced by hydrostatic disc models. The low mass of the 51 Oph inner disc in gas and dust may be explained either by the fast dissipation of an initial massive disc or by a very small initial disc mass.
We analyse the physical properties of 121 SNR $geq$ 5 sub-millimetre galaxies (SMGs) from the STUDIES 450-$mu$m survey. We model their UV-to-radio spectral energy distributions using MAGPHYS+photo-$z$ and compare the results to similar modelling of 8 50-$mu$m-selected SMG sample from AS2UDS, to understand the fundamental physical differences between the two populations at the observed depths. The redshift distribution of the 450-$mu$m sample has a median of $z$ = 1.85 $pm$ 0.12 and can be described by strong evolution of the far-infrared luminosity function. The fainter 450-$mu$m sample has $sim$14 times higher space density than the brighter 850-$mu$m sample at $z$ $lesssim$2, and a comparable space density at $z$ = 2-3, before rapidly declining, suggesting LIRGs are the main obscured population at $z$ $sim$ 1-2, while ULIRGs dominate at higher redshifts. We construct rest-frame $sim$ 180-$mu$m-selected and dust-mass-matched samples at $z$ = 1-2 and $z$ = 3-4 from the 450-$mu$m and 850-$mu$m samples, respectively, to probe the evolution of a uniform sample of galaxies spanning the cosmic noon era. Using far-infrared luminosity, dust masses and an optically-thick dust model, we suggest that higher-redshift sources have higher dust densities due to inferred dust continuum sizes which are roughly half of those for the lower-redshift population at a given dust mass, leading to higher dust attenuation. We track the evolution in the cosmic dust mass density and suggest that the dust content of galaxies is governed by a combination of both the variation of gas content and dust destruction timescale.
123 - Buat , V. , Ciesla 2019
Over the past few years ALMA has detected dust-rich galaxies whose cold dust emission is spatially disconnected from the UV rest-frame emission. This represents a challenge for modeling their spectral energy distributions with codes based on an energ y budget between the stellar and dust components. We want to verify the validity of energy balance modeling on a sample of galaxies observed from the UV to the sub-millimeter rest frame with ALMA and decipher what information can be reliably retrieved from the analysis of the full SED and from subsets of wavelengths. We select 17 sources at z~2 in the Hubble Ultra-Deep Field and in the GOODS- South field detected with ALMA and Herschel and for which UV to NIR. rest-frame ancillary data are available. We fit the data with CIGALE exploring different configurations for dust attenuation and star formation histories, considering either the full dataset or one that is reduced to the stellar and dust emission. We compare estimates of the dust luminosities, star formation rates, and stellar masses. The fit of the stellar continuum alone with the starburst attenuation law can only reproduce up to 50% of the total dust luminosity observed by Herschel and ALMA. This deficit is found to be consistent with similar quantities estimated in the COSMOS field and is found to increase with the specific star formation rate. The combined stellar and dust SEDs are well fitted when different attenuation laws are introduced. Shallow attenuation curves are needed for the galaxies whose cold dust distribution is very compact compared to starlight. The stellar mass estimates are affected by the choice of the attenuation law. The star formation rates are robustly estimated as long as dust luminosities are available. The large majority of the galaxies are above the average main sequence of star forming galaxies and one source is a strong starburst.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا