ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving the Estimation of Star formation Rates and Stellar Population Ages of High-redshift Galaxies from Broadband Photometry

122   0   0.0 ( 0 )
 نشر من قبل Seong-Kook Lee
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore methods to improve the estimates of star formation rates and mean stellar population ages from broadband photometry of high redshift star-forming galaxies. We use synthetic spectral templates with a variety of simple parametric star formation histories to fit broadband spectral energy distributions. These parametric models are used to infer ages, star formation rates and stellar masses for a mock data set drawn from a hierarchical semi-analytic model of galaxy evolution. Traditional parametric models generally assume an exponentially declining rate of star-formation after an initial instantaneous rise. Our results show that star formation histories with a much more gradual rise in the star formation rate are likely to be better templates, and are likely to give better overall estimates of the age distribution and star formation rate distribution of Lyman break galaxies. For B- and V-dropouts, we find the best simple parametric model to be one where the star formation rate increases linearly with time. The exponentially-declining model overpredicts the age by 100 % and 120 % for B- and V-dropouts, on average, while for a linearly-increasing model, the age is overpredicted by 9 % and 16 %, respectively. Similarly, the exponential model underpredicts star-formation rates by 56 % and 60 %, while the linearly-increasing model underpredicts by 15 % 22 %, respectively. For U-dropouts, the models where the star-formation rate has a peak (near z ~ 3) provide the best match for age -- overprediction is reduced from 110 % to 26 % -- and star-formation rate -- underprediction is reduced from 58 % to 22 %. We classify different types of star-formation histories in the semi-analytic models and show how the biases behave for the different classes. We also provide two-band calibration formulae for stellar mass and star formation rate estimations.



قيم البحث

اقرأ أيضاً

Establishing the stellar masses (M*), and hence specific star-formation rates (sSFRs) of submillimetre galaxies (SMGs) is crucial for determining their role in the cosmic galaxy/star formation. However, there is as yet no consensus over the typical M * of SMGs. Specifically, even for the same set of SMGs, the reported average M* have ranged over an order of magnitude, from ~5x10^10 Mo to ~5x10^11 Mo. Here we study how different methods of analysis can lead to such widely varying results. We find that, contrary to recent claims in the literature, potential contamination of IRAC 3-8 um photometry from hot dust associated with an active nucleus is not the origin of the published discrepancies in derived M*. Instead, we expose in detail how inferred M* depends on assumptions made in the photometric fitting, and quantify the individual and cumulative effects of different choices of initial mass function, different brands of evolutionary synthesis models, and different forms of assumed star-formation history. We review current observational evidence for and against these alternatives as well as clues from the hydrodynamical simulations, and conclude that, for the most justifiable choices of these model inputs, the average M* of SMGs is ~2x10^11 Mo. We also confirm that this number is perfectly reasonable in the light of the latest measurements of their dynamical masses, and the evolving M* function of the overall galaxy population. M* of this order imply that the average sSFR of SMGs is comparable to that of other star-forming galaxies at z>2, at 2-3 Gyr^-1. This supports the view that, while rare outliers may be found at any M*, most SMGs simply form the top end of the main-sequence of star-forming galaxies at these redshifts. Conversely, this argues strongly against the viewpoint that SMGs are extreme pathological objects, of little relevance in the cosmic history of star-formation.
483 - Chun Ly 2012
We present the first detailed study of the stellar populations of star-forming galaxies at z~1.5, which are selected by their [O II] emission line, detected in narrow-band surveys. We identified ~1,300 [O II] emitters at z=1.47 and z=1.62 in the Suba ru Deep Field with rest-frame EWs above 13AA. Optical and near-infrared spectroscopic observations for ~10% of our samples show that our separation of [O II] from [O III] emission-line galaxies in two-color space is 99% successful. We analyze the multi-wavelength properties of a subset of ~1,200 galaxies with the best photometry. They have average rest-frame EW of 45AA, stellar mass of 3 x 10^9 M_sun, and stellar age of 100 Myr. In addition, our SED fitting and broad-band colors indicate that [O II] emitters span the full range of galaxy populations at z~1.5. We also find that 80% of [O II] emitters are also photometrically classified as BX/BM (UV) galaxies and/or the star-forming BzK (near-IR) galaxies. Our [O II] emission line survey produces a far more complete, and somewhat deeper sample of z~1.5 galaxies than either the BX/BM or sBzK selection alone. We constructed average SEDs and find that higher [O II] EW galaxies have somewhat bluer continua. SED model-fitting shows that they have on average half the stellar mass of galaxies with lower [O II] EW. The observed [O II] luminosity is well-correlated with the far-UV continuum with a logarithmic slope slightly 0f 0.89pm0.22. The scatter of the [O II] luminosity against the far-UV continuum suggests that [O II] can be used as a SFR indicator with a reliability of 0.23 dex.
139 - Dorte Mehlert 2001
Using the VLT we have obtained high quality spectra of about 70 high redshift (1- 4.6) galaxies within the FORS Deep Field (FDF). As expected most of them turn out to be (bright) starburst galaxies and the observed spectra agree with synthetic ones. The equivalent width of the CIV(1550) absorption line turns out to be a good indicator for the galaxies metallicity. Furthermore our high-z starburst galaxies show increasing metal content with decreasing redshift. Compared with local starburst galaxies they tend to be overliminous for their metallicity.
143 - Desika Narayanan 2013
I present a model for the star formation properties of z~2 starburst galaxies. Here, I discuss models for the formation of high-z Submillimeter Galaxies, as well as the CO-H2 conversion factor for these systems. I then apply these models to literatur e observations. I show that when using a functional form for XCO that varies smoothly with the physical properties in galaxies, galaxies at both local and high-z lie on a unimodal Kennicutt-Schmidt star formation law, with power-law index of ~2. The inferred gas fractions of these galaxies are large (fgas ~ 0.2-0.4), though a factor ~2 lower than most literature estimates that utilize locally-calibrated CO-H2 conversion factors.
We study dwarf galaxy formation at high redshift ($zge5$) using a suite of high- resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the re levant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose 3 modifications to SAMs that will provide more accurate high-redshift simulations. These include 1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; 2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and 3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا