ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of local interaction and dispersal on the dynamics of size-structured populations

130   0   0.0 ( 0 )
 نشر من قبل Thomas Adams
 تاريخ النشر 2010
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Thomas Adams ast




اسأل ChatGPT حول البحث

Traditional approaches to ecosystem modelling have relied on spatially homogeneous approximations to interaction, growth and death. More recently, spatial interaction and dispersal have also been considered. While these leads to certain changes in community dynamics, their effect is sometimes fairly minimal, and demographic scenarios in which this difference is important have not been systematically investigated. We take a simple mean-field model which simulates birth, growth and death processes, and rewrite it with spatially distributed discrete individuals. Each individuals growth and mortality is determined by a competition measure which captures the effects of neighbours in a way which retains the conceptual simplicity of a generic, analytically-solvable model. Although the model is generic, we here parameterise it using data from Caledonian Scots Pine stands. The dynamics of simulated populations, starting from a plantation lattice configuration, mirror those of well-established qualitative descriptions of natural forest stand behaviour; an analogy which assists in understanding the transition from artificial to old-growth structure. When parameterised for Scots Pine populations, the signature of spatial processes is evident, but they do not have a large effect on first-order statistics such as density and biomass. The sensitivity of this result to variation in each individual rate parameter is investigated; distinct differences between spatial and mean-field models are seen only upon alteration of the interaction strength parameters, and in low density populations. Under the Scots Pine parameterisation, dispersal also has an effect of spatial structure, but not first-order properties. Only in more intense competitive scenarios does altering the relative scales of dispersal and interaction lead to a clear signal in first order behaviour.



قيم البحث

اقرأ أيضاً

In evolutionary processes, population structure has a substantial effect on natural selection. Here, we analyze how motion of individuals affects constant selection in structured populations. Motion is relevant because it leads to changes in the dist ribution of types as mutations march toward fixation or extinction. We describe motion as the swapping of individuals on graphs, and more generally as the shuffling of individuals between reproductive updates. Beginning with a one-dimensional graph, the cycle, we prove that motion suppresses natural selection for death-birth updating or for any process that combines birth-death and death-birth updating. If the rule is purely birth-death updating, no change in fixation probability appears in the presence of motion. We further investigate how motion affects evolution on the square lattice and weighted graphs. In the case of weighted graphs we find that motion can be either an amplifier or a suppressor of natural selection. In some cases, whether it is one or the other can be a function of the relative reproductive rate, indicating that motion is a subtle and complex attribute of evolving populations. As a first step towards understanding less restricted types of motion in evolutionary graph theory, we consider a similar rule on dynamic graphs induced by a spatial flow and find qualitatively similar results indicating that continuous motion also suppresses natural selection.
Temporal environmental variations are ubiquitous in nature, yet most of the theoretical works in population genetics and evolution assume fixed environment. Here we analyze the effect of variations in carrying capacity on the fate of a mutant type. W e consider a two-state Moran model, where selection intensity at equilibrium may differ (in amplitude and in sign) from selection during periods of sharp growth and sharp decline. Using Kimuras diffusion approximation we present simple formulae for effective population size and effective selection, and use it to calculate the chance of ultimate fixation, the time to fixation and the time to absorption (either fixation or loss). Our analysis shows perfect agreement with numerical solutions for neutral, beneficial and deleterious mutant. The contributions of different processes to the mean and the variance of abundance variations are additive and commutative. As a result, when selection intensity $s$ is weak such that ${cal O}(s^2)$ terms are negligible, periodic or stochastic environmental variations yield identical results.
Population structure induced by both spatial embedding and more general networks of interaction, such as model social networks, have been shown to have a fundamental effect on the dynamics and outcome of evolutionary games. These effects have, howeve r, proved to be sensitive to the details of the underlying topology and dynamics. Here we introduce a minimal population structure that is described by two distinct hierarchical levels of interaction. We believe this model is able to identify effects of spatial structure that do not depend on the details of the topology. We derive the dynamics governing the evolution of a system starting from fundamental individual level stochastic processes through two successive meanfield approximations. In our model of population structure the topology of interactions is described by only two parameters: the effective population size at the local scale and the relative strength of local dynamics to global mixing. We demonstrate, for example, the existence of a continuous transition leading to the dominance of cooperation in populations with hierarchical levels of unstructured mixing as the benefit to cost ratio becomes smaller then the local population size. Applying our model of spatial structure to the repeated prisoners dilemma we uncover a novel and counterintuitive mechanism by which the constant influx of defectors sustains cooperation. Further exploring the phase space of the repeated prisoners dilemma and also of the rock-paper-scissor game we find indications of rich structure and are able to reproduce several effects observed in other models with explicit spatial embedding, such as the maintenance of biodiversity and the emergence of global oscillations.
Living species, ranging from bacteria to animals, exist in environmental conditions that exhibit spatial and temporal heterogeneity which requires them to adapt. Risk-spreading through spontaneous phenotypic variations is a known concept in ecology, which is used to explain how species may survive when faced with the evolutionary risks associated with temporally varying environments. In order to support a deeper understanding of the adaptive role of spontaneous phenotypic variations in fluctuating environments, we consider a system of non-local partial differential equations modelling the evolutionary dynamics of two competing phenotype-structured populations in the presence of periodically oscillating nutrient levels. The two populations undergo spontaneous phenotypic variations at different rates. The phenotypic state of each individual is represented by a continuous variable, and the phenotypic landscape of the populations evolves in time due to variations in the nutrient level. Exploiting the analytical tractability of our model, we study the long-time behaviour of the solutions to obtain a detailed mathematical depiction of evolutionary dynamics. The results suggest that when nutrient levels undergo small and slow oscillations, it is evolutionarily more convenient to rarely undergo spontaneous phenotypic variations. Conversely, under relatively large and fast periodic oscillations in the nutrient levels, which bring about alternating cycles of starvation and nutrient abundance, higher rates of spontaneous phenotypic variations confer a competitive advantage. We discuss the implications of our results in the context of cancer metabolism.
Background: Analysing tumour architecture for metastatic potential usually focuses on phenotypic differences due to cellular morphology or specific genetic mutations, but often ignore the cells position within the heterogeneous substructure. Similar disregard for local neighborhood structure is common in mathematical models. Methods: We view the dynamics of disease progression as an evolutionary game between cellular phenotypes. A typical assumption in this modeling paradigm is that the probability of a given phenotypic strategy interacting with another depends exclusively on the abundance of those strategies without regard local heterogeneities. We address this limitation by using the Ohtsuki-Nowak transform to introduce spatial structure to the go vs. grow game. Results: We show that spatial structure can promote the invasive (go) strategy. By considering the change in neighbourhood size at a static boundary -- such as a blood-vessel, organ capsule, or basement membrane -- we show an edge effect that allows a tumour without invasive phenotypes in the bulk to have a polyclonal boundary with invasive cells. We present an example of this promotion of invasive (EMT positive) cells in a metastatic colony of prostate adenocarcinoma in bone marrow. Interpretation: Pathologic analyses that do not distinguish between cells in the bulk and cells at a static edge of a tumour can underestimate the number of invasive cells. We expect our approach to extend to other evolutionary game models where interaction neighborhoods change at fixed system boundaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا