ﻻ يوجد ملخص باللغة العربية
The phenomenon of magnetic quantum oscillations in the superconducting state poses several questions that still defy satisfactory answers. A key controversial issue concerns the additional damping observed in the vortex state. Here, we show results of mu SR, dHvA, and SQUID magnetization measurements on borocarbide superconductors, indicating that a sharp drop observed in the dHvA amplitude just below H_{c2} is correlated with enhanced disorder of the vortex lattice in the peak-effect region, which significantly enhances quasiparticle scattering by the pair potential.
We study effects of pinning on the dynamics of a vortex lattice in a type II superconductor in the strong-pinning situation and determine the force--velocity (or current--voltage) characteristic combining analytical and numerical methods. Our analysi
The vortex lattice in a Type II superconductor provides a versatile model system to investigate the order-disorder transition in a periodic medium in the presence of random pinning. Here, using scanning tunnelling spectroscopy in a weakly pinned Co0.
Oscillatory dynamics and quasi-static Campbell regime of the vortex lattice (VL) in twinned YBa2Cu3O7 single crystals has been explored at low fields near the peak effect (PE) region by linear and non-linear ac susceptibility measurements. We show ev
A review is given on the theory of vortex-glass phases in impure type-II superconductors in an external field. We begin with a brief discussion of the effects of thermal fluctuations on the spontaneously broken U(1) and translation symmetries, on the
The dynamics of vortices in type II superconductors exhibit a variety of patterns whose origin is poorly understood. This is partly due to the nonlinearity of the vortex mobility which gives rise to singular behavior in the vortex densities. Such sin