ﻻ يوجد ملخص باللغة العربية
We present a study of the lattice response to the compressive and tensile biaxial stress in La0.67Sr0.33MnO3 (LSMO) and SrRuO3 (SRO) thin films grown on a variety of single crystal substrates: SrTiO3, DyScO3, NdGaO3 and (La,Sr)(Al,Ta)O3. The results show, that in thin films under misfit strain, both SRO and LSMO lattices, which in bulk form have orthorhombic (SRO) and rhombohedral (LSMO) structures, assume unit cells that are monoclinic under compressive stress and tetragonal under tensile stress. The applied stress effectively modifies the BO6 octahedra rotations, which degree and direction can be controlled by magnitude and sign of the misfit strain. Such lattice distortions change the B-O-B bond angles and therefore are expected to affect magnetic and electronic properties of the ABO3 perovskites.
The existence of band gaps in Mott insulators such as perovskite oxides with partially filled 3d shells has been traditionally explained in terms of strong, dynamic inter-electronic repulsion codified by the on-site repulsion energy U in the Hubbard
The layered {beta}-NaMnO2, a promising Na-ion energy-storage material has been investigated for its triangular lattice capability to promote complex magnetic configurations that may release symmetry restrictions for the coexistence of ferroelectric a
The stoichiometric Ni$_{50}$Mn$_{25}$In$_{25}$ Heusler alloy transforms from a stable ferromagnetic austenitic ground state to an incommensurate modulated martensitic ground state with a progressive replacement of In with Mn without any pre-transitio
The interrelation between the epitaxial strain and oxygen deficiency in La0.7Ca0.3MnO3-{delta} thin films was studied in terms of structural and functional properties. The films with a thickness of 1000{AA} were prepared using a PLD system equipped w
Ferroelectric BaTiO3 films with large polarization have been integrated with Si(001) by pulsed laser deposition. High quality c-oriented epitaxial films are obtained in a substrate temperature range of about 300 deg C wide. The deposition temperature