ﻻ يوجد ملخص باللغة العربية
Propagating fronts arising from bistable reaction-diffusion equations are a purely deterministic effect. Stochastic reaction-diffusion processes also show front propagation which coincides with the deterministic effect in the limit of small fluctuations (usually, large populations). However, for larger fluctuations propagation can be affected. We give an example, based on the classic spruce-budworm model, where the direction of wave propagation, i.e., the relative stability of two phases, can be reversed by fluctuations.
This paper is an introductory review of the problem of front propagation into unstable states. Our presentation is centered around the concept of the asymptotic linear spreading velocity v*, the asymptotic rate with which initially localized perturba
We investigate the entanglement dynamics between two distant qubits by analyzing correlations in the quantum Ising model. Starting from the spin system in a paramagnetic regime enforced by the external magnetic field $B$, we then switch on the ferrom
The problem of front propagation in flowing media is addressed for laminar velocity fields in two dimensions. Three representative cases are discussed: stationary cellular flow, stationary shear flow, and percolating flow. Production terms of Fisher-
An initially homogeneous freely evolving fluid of inelastic hard spheres develops inhomogeneities in the flow field (vortices) and in the density field (clusters), driven by unstable fluctuations. Their spatial correlations, as measured in molecular
We study instabilities and relaxation to equilibrium in a long-range extension of the Fermi-Pasta-Ulam-Tsingou (FPU) oscillator chain by exciting initially the lowest Fourier mode. Localization in mode space is stronger for the long-range FPU model.