ترغب بنشر مسار تعليمي؟ اضغط هنا

The only Kahler manifold with degree of mobility $ge 3$ is $(CP(n), g_{Fubini-Study})$

124   0   0.0 ( 0 )
 نشر من قبل Vladimir Matveev
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The degree of mobility of a (pseudo-Riemannian) Kahler metric is the dimension of the space of metrics h-projectively equivalent to it. We prove that a metric on a closed connected manifold can not have the degree of mobility $ge 3$ unless it is essentially the Fubini-Study metric, or the h-projective equivalence is actually the affine equivalence. As the main application we prove an important special case of the classical conjecture attributed to Obata and Yano, stating that a closed manifold admitting an essential group of h-projective transformations is $(CP(n), g_{Fubini-Study})$ (up to a multiplication of the metric by a constant). An additional result is the generalization of a certain result of Tanno 1978 for the pseudo-Riemannian situation.



قيم البحث

اقرأ أيضاً

120 - Jixiang Fu , Jian Xiao 2012
In this paper, we consider a natural map from the Kahler cone to the balanced cone of a Kahler manifold. We study its injectivity and surjecticity. We also give an analytic characterization theorem on a nef class being Kahler.
We prove a uniform diameter bound for long time solutions of the normalized Kahler-Ricci flow on an $n$-dimensional projective manifold $X$ with semi-ample canonical bundle under the assumption that the Ricci curvature is uniformly bounded for all ti me in a fixed domain containing a fibre of $X$ over its canonical model $X_{can}$. This assumption on the Ricci curvature always holds when the Kodaira dimension of $X$ is $n$, $n-1$ or when the general fibre of $X$ over its canonical model is a complex torus. In particular, the normalized Kahler-Ricci flow converges in Gromov-Hausdorff topolopy to its canonical model when $X$ has Kodaira dimension $1$ with $K_X$ being semi-ample and the general fibre of $X$ over its canonical model being a complex torus. We also prove the Gromov-Hausdorff limit of collapsing Ricci-flat Kahler metrics on a holomorphically fibred Calabi-Yau manifold is unique and is homeomorphic to the metric completion of the corresponding twisted Kahler-Einstein metric on the regular part of its base.
Let $mathcal{K}(n, V)$ be the set of $n$-dimensional compact Kahler-Einstein manifolds $(X, g)$ satisfying $Ric(g)= - g$ with volume bounded above by $V$. We prove that after passing to a subsequence, any sequence ${ (X_j, g_j)}_{j=1}^infty$ in $math cal{K}(n, V)$ converges, in the pointed Gromov-Hausdorff topology, to a finite union of complete Kahler-Einstein metric spaces without loss of volume. The convergence is smooth off a closed singular set of Hausdorff dimension no greater than $2n-4$, and the limiting metric space is biholomorphic to an $n$-dimensional semi-log canonical model with its non log terminal locus of complex dimension no greater than $n-1$ removed. We also show that the Weil-Petersson metric extends uniquely to a Kahler current with bounded local potentials on the KSBA compactification of the moduli space of canonically polarized manifolds. In particular, the coarse KSBA moduli space has finite volume with respect to the Weil-Petersson metric. Our results are a high dimensional generalization of the well known compactness results for hyperbolic metrics on compact Riemann surfaces of fixed genus greater than one.
241 - Maxim Braverman 2012
For a compact Lie group G we define a regularized version of the Dolbeault cohomology of a G-equivariant holomorphic vector bundles over non-compact Kahler manifolds. The new cohomology is infinite-dimensional, but as a representation of G it decompo ses into a sum of irreducible components, each of which appears in it with finite multiplicity. Thus equivariant Betti numbers are well defined. We study various properties of the new cohomology and prove that it satisfies a Kodaira-type vanishing theorem.
We review the information geometry of linear systems and its application to Bayesian inference, and the simplification available in the Kahler manifold case. We find conditions for the information geometry of linear systems to be Kahler, and the rela tion of the Kahler potential to information geometric quantities such as $alpha $-divergence, information distance and the dual $alpha $-connection structure. The Kahler structure simplifies the calculation of the metric tensor, connection, Ricci tensor and scalar curvature, and the $alpha $-generalization of the geometric objects. The Laplace--Beltrami operator is also simplified in the Kahler geometry. One of the goals in information geometry is the construction of Bayesian priors outperforming the Jeffreys prior, which we use to demonstrate the utility of the Kahler structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا