Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber


الملخص بالإنكليزية

We demonstrate experimentally and theoretically that a nanoscale hollow channel placed centrally in the solid glass core of a photonic crystal fiber strongly enhances the cylindrical birefringence (the modal index difference between radially and azimuthally polarized modes). Furthermore, it causes a large split in group velocity and group velocity dispersion. We show analytically that all three parameters can be varied over a wide range by tuning the diameters of the nanobore and the core.

تحميل البحث