ترغب بنشر مسار تعليمي؟ اضغط هنا

Red-emitting fluorescent Organic Light emitting Diodes with low sensitivity to self-quenching

209   0   0.0 ( 0 )
 نشر من قبل Sebastien Forget
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sebastien Forget




اسأل ChatGPT حول البحث

Concentration quenching is a major impediment to efficient organic light-emitting devices. We herein report on Organic Light-Emitting Diodes (OLEDs) based on a fluorescent amorphous red-emitting starbust triarylamine molecule (4-di(4-tert-butylbiphenyl-4-yl)amino-4-dicyanovinylbenzene, named FVIN), exhibiting a very small sensitivity to concentration quenching. OLEDs are fabricated with various doping levels of FVIN into Alq3, and show a remarkably stable external quantum efficiency of 1.5% for doping rates ranging from 5% up to 40%, which strongly relaxes the technological constraints on the doping accuracy. An efficiency of 1% is obtained for a pure undoped active region, along with deep red emission (x=0.6; y=0.35 CIE coordinates). A comparison of FVIN with the archetypal DCM dye is presented in an identical multilayer OLED structure.



قيم البحث

اقرأ أيضاً

The magnetoelectroluminescence of conjugated organic polymer films is widely accepted to arise from a polaron pair mechanism, but their magnetoconductance is less well understood. Here we derive a new relationship between the experimentally measurabl e magnetoelectroluminescence and magnetoconductance and the theoretically calculable singlet yield of the polaron pair recombination reaction. This relationship is expected to be valid regardless of the mechanism of the magnetoconductance, provided the mobilities of the free polarons are independent of the applied magnetic field (i.e., provided one discounts the possibility of spin-dependent transport). We also discuss the semiclassical calculation of the singlet yield of the polaron pair recombination reaction for materials such as poly(2,5-dioctyloxy-paraphenylene vinylene) (DOO-PPV), the hyperfine fields in the polarons of which can be extracted from light-induced electron spin resonance measurements. The resulting theory is shown to give good agreement with experimental data for both normal (H-) and deuterated (D-) DOO-PPV over a wide range of magnetic field strengths once singlet-triplet dephasing is taken into account. Without this effect, which has not been included in any previous simulation of magnetoelectroluminescence, it is not possible to reproduce the experimental data for both isotopologues in a consistent fashion. Our results also indicate that the magnetoconductance of DOO-PPV cannot be solely due to the effect of the magnetic field on the dissociation of polaron pairs.
We report high luminance organic light-emitting diodes by use of acid functionalized multi-walled carbon nanotube (o-MWCNTs) as efficient hole injector electrodes with a simple and solution processable device structure. At only 10 V, the luminance ca n reach nearly 50,000 cd/m2 with an external quantum efficiency over 2% and a current efficiency greater than 21 cd/A. The investigation of hole-only devices shows that the mechanism for hole injection is changed from injection limited to bulk limited because of the higher effective work function of the anode modified by the o-MWCNTs. We expect the enhancement of the local electric field brought about by both the dielectric inhomogeneities within the o-MWCNT containing anode and the high aspect ratio carbon nanotubes, improves hole injection from the anode to organic active layer at much lower applied voltage.
The performance of solution-processed organic light emitting diodes (OLEDs) is often limited by non-uniform contacts. In this work, we introduce Ni-containing solution-processed metal oxide (MO) interfacial layers inserted between indium tin oxide (I TO) and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to improve the bottom electrode contact for OLEDs using the poly(p-phenylene vinylene) (PPV) derivative Super-Yellow (SY) as an emission layer. For ITO/Ni-containing MO/PEDOT:PSS bottom electrode structures we show enhanced wetting properties that result in an improved OLED device efficiency. Best performance is achieved using a Cu-Li co-doped spinel nickel cobaltite [(Cu-Li):NiCo2O4], for which the current efficiency and luminous efficacy of SY OLEDs increased, respectively, by 12% and 11% from the values obtained for standard devices without a Ni-containing MO interface modification between ITO and PEDOT:PSS. The enhanced performance was attributed to the improved morphology of PEDOT:PSS, which consequently increased the hole injection capability of the optimized ITO/(Cu-Li):NiCo2O4/PEDOT:PSS electrode.
180 - Andrea Camposeo 2014
The simultaneous vertical-cavity and random lasing emission properties of a blue-emitting molecular crystal are investigated. The 1,1,4,4-tetraphenyl-1,3-butadiene samples, grown by physical vapour transport, feature room-temperature stimulated emiss ion peaked at about 430 nm. Fabry-Perot and random resonances are primed by the interfaces of the crystal with external media and by defect scatterers, respectively. The analysis of the resulting lasing spectra evidences the existence of narrow peaks due to both the built-in vertical Fabry-Perot cavity and random lasing in a novel, surface-emitting configuration and threshold around 500 microJ cm^-2. The anti-correlation between different modes is also highlighted, due to competition for gain. Molecular crystals with optical gain candidate as promising photonic media inherently supporting multiple lasing mechanisms.
The application of solution-processable graphene oxide (GO) as hole injection layer in organic light-emitting diodes (OLEDs) is demonstrated. High luminance of over 53,000 cd m-2 is obtained at only 10 V. The results will unlock a route of applying G O in flexible OLEDs and other electrode applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا