ترغب بنشر مسار تعليمي؟ اضغط هنا

Type IIP Supernova 2009kf: Explosion Driven by Black Hole Accretion?

95   0   0.0 ( 0 )
 نشر من قبل Victor Utrobin P.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V.P. Utrobin




اسأل ChatGPT حول البحث

Unusually bright type IIP supernova (SN) 2009kf is studied employing the hydrodynamic modelling. We derived optimal values of the ejecta mass of 28.1 Msun, explosion energy of 2.2x10^{52} erg, and presupernova radius of 2x10^3 Rsun assuming that Ni-56 mass is equal to the upper limit of 0.4 Msun. We analyzed effects of the uncertainties in the extinction and Ni-56 mass and concluded that both the ejecta mass and explosion energy cannot be significantly reduced compared with the optimal values. The huge explosion energy of SN 2009kf indicates that the explosion is caused by the same mechanism which operates in energetic SNe Ibc (hypernovae), i.e., via a rapid disk accretion onto black hole. The ejecta mass combined with the black hole mass and the mass lost by stellar wind yields the progenitor mass of about 36 Msun. We propose a scenario in which massive binary evolution might result in the SN 2009kf event.



قيم البحث

اقرأ أيضاً

174 - V.P. Utrobin MPA 2013
The explosion energy and the ejecta mass of a type IIP supernova make up the basis for the theory of explosion mechanism. So far, these parameters have only been determined for seven events. Type IIP supernova 2008in is another well-observed event fo r which a detailed hydrodynamic modeling can be used to derive the supernova parameters. Hydrodynamic modeling was employed to describe the bolometric light curve and the expansion velocities at the photosphere level. A time-dependent model for hydrogen ionization and excitation was applied to model the Halpha and Hbeta line profiles. We found an ejecta mass of 13.6 Msun, an explosion energy of 5.05x10^50 erg, a presupernova radius of 570 Rsun, and a radioactive Ni-56 mass of 0.015 Msun. The estimated progenitor mass is 15.5 Msun. We uncovered a problem of the Halpha and Hbeta description at the early phase, which cannot be resolved within a spherically symmetric model. The presupernova of SN 2008in was a normal red supergiant with the minimum mass of the progenitor among eight type IIP supernovae explored by means of the hydrodynamic modeling. The problem of the absence of type IIP supernovae with the progenitor masses <15 Msun in this sample remains open.
We present photometric and spectroscopic observations of a luminous type IIP Supernova 2009kf discovered by the Pan-STARRS 1 (PS1) survey and detected also by GALEX. The SN shows a plateau in its optical and bolometric light curves, lasting approxima tely 70 days in the rest frame, with absolute magnitude of M_V = -18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of 9000km/s at 61 days after discovery which is extremely high for a type IIP SN. SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a slow evolution 10-20 days after optical discovery. The NUV and optical luminosity at these epochs can be modelled with a black-body with a hot effective temperature (T ~16,000 K) and a large radius (R ~1x10^{15} cm). The bright bolometric and NUV luminosity, the lightcurve peak and plateau duration, the high velocities and temperatures suggest that 2009kf is a type IIP SN powered by a larger than normal explosion energy. Recently discovered high-z SNe (0.7 < z < 2.3) have been assumed to be IIn SNe, with the bright UV luminosities due to the interaction of SN ejecta with a dense circumstellar medium (CSM). UV bright SNe similar to SN 2009kf could also account for these high-z events, and its absolute magnitude M_NUV = -21.5 +/- 0.5 mag suggests such SNe could be discovered out to z ~2.5 in the PS1 survey.
Type II-plateau supernovae (SNe IIP) are the most numerous subclass of core-collapse SNe originating from massive stars. In the framework of the neutrino-driven explosion mechanism, we study the SN outburst properties for a red supergiant progenitor model and compare the corresponding light curves with observations of the ordinary Type IIP SN 1999em. Three-dimensional (3D) simulations of (parametrically triggered) neutrino-driven explosions are performed with the (explicit, finite-volume, Eulerian, multifluid hydrodynamics) code PROMETHEUS, using a presupernova model of a 15 Msun star as initial data. At approaching homologous expansion, the hydrodynamical and composition variables of the 3D models are mapped to a spherically symmetric configuration, and the simulations are continued with the (implicit, Lagrangian radiation-hydrodynamics) code CRAB to follow the blast-wave evolution during the SN outburst. Our 3D neutrino-driven explosion model with an explosion energy of about 0.5x10^51 erg produces Ni-56 in rough agreement with the amount deduced from fitting the radioactively powered light-curve tail of SN 1999em. The considered presupernova model, 3D explosion simulations, and light-curve calculations can explain the basic observational features of SN 1999em, except for those connected to the presupernova structure of the outer stellar layers. Our 3D simulations show that the distribution of Ni-rich matter in velocity space is asymmetric with a strong dipole component that is consistent with the observations of SN 1999em. The monotonic luminosity decline from the plateau to the radioactive tail in ordinary SNe IIP is a manifestation of the intense turbulent mixing at the He/H composition interface.
100 - T. Nagao , A. Cikota , F. Patat 2019
Type IIP supernovae (SNe IIP), which represent the most common class of core-collapse (CC) SNe, show a rapid increase in continuum polarization just after entering the tail phase. This feature can be explained by a highly asymmetric helium core, whic h is exposed when the hydrogen envelope becomes transparent. Here we report the case of a SN IIP (SN~2017gmr) that shows an unusually early rise of the polarization, $gtrsim 30$ days before the start of the tail phase. This implies that SN~2017gmr is an SN IIP that has very extended asphericity. The asymmetries are not confined to the helium core, but reach out to a significant part of the outer hydrogen envelope, hence clearly indicating a marked intrinsic diversity in the aspherical structure of CC explosions. These observations provide new constraints on the explosion mechanism, where viable models must be able to produce such extended deviations from spherical symmetry, and account for the observed geometrical diversity.
132 - G. Dhungana , R. Kehoe , J. Vinko 2015
We present extensive optical ($UBVRI$, $griz$, and open CCD) and near-infrared ($ZYJH$) photometry for the very nearby Type IIP SN ~2013ej extending from +1 to +461 days after shock breakout, estimated to be MJD $56496.9pm0.3$. Substantial time serie s ultraviolet and optical spectroscopy obtained from +8 to +135 days are also presented. Considering well-observed SNe IIP from the literature, we derive $UBVRIJHK$ bolometric calibrations from $UBVRI$ and unfiltered measurements that potentially reach 2% precision with a $B-V$ color-dependent correction. We observe moderately strong Si II $lambda6355$ as early as +8 days. The photospheric velocity ($v_{rm ph}$) is determined by modeling the spectra in the vicinity of Fe II $lambda5169$ whenever observed, and interpolating at photometric epochs based on a semianalytic method. This gives $v_{rm ph} = 4500pm500$ km s$^{-1}$ at +50 days. We also observe spectral homogeneity of ultraviolet spectra at +10--12 days for SNe IIP, while variations are evident a week after explosion. Using the expanding photosphere method, from combined analysis of SN 2013ej and SN 2002ap, we estimate the distance to the host galaxy to be $9.0_{-0.6}^{+0.4}$ Mpc, consistent with distance estimates from other methods. Photometric and spectroscopic analysis during the plateau phase, which we estimated to be $94pm7$ days long, yields an explosion energy of $0.9pm0.3times10^{51}$ ergs, a final pre-explosion progenitor mass of $15.2pm4.2$~M$_odot$ and a radius of $250pm70$~R$_odot$. We observe a broken exponential profile beyond +120 days, with a break point at +$183pm16$ days. Measurements beyond this break time yield a $^{56}$Ni mass of $0.013pm0.001$~M$_odot$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا