ﻻ يوجد ملخص باللغة العربية
The analytical relations in position, momentum and four-dimensional spaces are established for the expansion and one-range addition theorems of relativistic complete orthonormal sets of exponential type spinor wave functions and Slater spinor orbitals of arbitrary half-integral spin. These theorems are expressed through the corresponding nonrelativistic expansion and one-range addition theorems of the spin-0 particles introduced by the author. The expansion and one-range addition theorems derived are especially useful for the computation of multicenter integrals over exponential type spinor orbitals arising in the generalized relativistic Dirac-Hartree-Fock-Roothaan theory when the position, momentum and four-dimensional spaces are employed.
Using the complete orthonormal sets of radial parts of nonrelativitistic exponential type orbitals (2,1, 0, 1, 2, ...) and spinor type tensor spherical harmonics of rank s the new formulae for the 2(2s+1)-component relativistic spinors useful in the
By the use of complete orthonormal sets of nonrelativistic scalar orbitals introduced by the author in previous papers the new complete orthonormal basis sets for two- and four-component spinor wave functions, and Slater spinor orbitals useful in the
By the use of complete orthonormal sets of nonrelativistic scalar orbitals introduced by the author in previous papers the new complete orthonormal basis sets for two-and four-component spinor wave functions, and Slater spinor orbitals useful in the
Using one-range addition theorems for noninteger n Slater type orbitals and Coulomb-Yukawa like correlated interaction potentials with noninteger indices obtained by the author with the help of complete orthonormal sets of exponential type orbitals,
Using the complete orthonormal basis sets of nonrelativistic and quasirelativistic orbitals introduced by the author in previous papers for particles with arbitrary spin the new analytical relations for the -component relativistic tensor wave functio