ﻻ يوجد ملخص باللغة العربية
We report on microwave (mw) radiation induced electric currents in (Cd,Mn)Te/(Cd,Mg)Te and InAs/(In,Ga)As quantum wells subjected to an external in-plane magnetic field. The current generation is attributed to the spin-dependent energy relaxation of electrons heated by mw radiation. The relaxation produces equal and oppositely directed electron flows in the spin-up and spin-down subbands yielding a pure spin current. The Zeeman splitting of the subbands in the magnetic field leads to the conversion of the spin flow into a spin-polarized electric current.
We report on the study of spin-polarized electric currents in diluted magnetic semiconductor (DMS) quantum wells subjected to an in-plane external magnetic field and illuminated by microwave or terahertz radiation. The effect is studied in (Cd,Mn)Te/
In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored
We demonstrate a mesoscopic spin polarizer/analyzer system that allows the spin polarization of current from a quantum point contact in an in-plane magnetic field to be measured. A transverse focusing geometry is used to couple current from an emitte
We present Maxwell equations with source terms for the electromagnetic field interacting with a moving electron in a spin-orbit coupled semiconductor heterostructure. We start with the eight--band ${bm k}{bm p}$ model and derive the electric and magn
We report on the study of terahertz radiation induced MIRO-like oscillations of magneto-resistivity in GaAs heterostructures. Our experiments provide an answer on two most intriguing questions - effect of radiation helicity and the role of the edges