ﻻ يوجد ملخص باللغة العربية
We report experiments on hard sphere colloidal glasses that reveal a type of shear banding hitherto unobserved in soft glasses. We present a scenario that relates this to an instability arising from shear-concentration coupling, a mechanism previously thought unimportant in this class of materials. Below a characteristic shear rate $dotgamma_c$ we observe increasingly non-linear velocity profiles and strongly localized flows. We attribute this trend to very slight concentration gradients (likely to evade direct detection) arising in the unstable flow regime. A simple model accounts for both the observed increase of $dotgamma_c$ with concentration, and the fluctuations observed in the flow.
We assess the possibility of shear banding of semidilute rod-like colloidal suspensions under steady shear ow very close to the isotropic-nematic spinodal, using a combination of rheology, small angle neutron scattering, and laser Doppler velocimetry
There is growing evidence that the flow of driven amorphous solids is not homogeneous, even if the macroscopic stress is constant across the system. Via event driven molecular dynamics simulations of a hard sphere glass, we provide the first direct e
Using fast confocal microscopy we image the three-dimensional dynamics of particles in a yielded hard-sphere colloidal glass under steady shear. The structural relaxation, observed in regions with uniform shear, is nearly isotropic but is distinctly
We study the flow of concentrated hard-sphere colloidal suspensions along smooth, non-stick walls using cone-plate rheometry and simultaneous confocal microscopy. In the glass regime, the global flow shows a transition from Herschel-Bulkley behavior
Using a micro particle imaging velocity technique, we resolve for the first time the three dimensionnal structure of wormlike shear banding flows in straight microchannels. The study revealed two effects, which should be generic for shear banding flo