ﻻ يوجد ملخص باللغة العربية
Coupled biological oscillators can tick with the same period. How this collective period is established is a key question in understanding biological clocks. We explore this question in the segmentation clock, a population of coupled cellular oscillators in the vertebrate embryo that sets the rhythm of somitogenesis, the morphological segmentation of the body axis. The oscillating cells of the zebrafish segmentation clock are thought to possess noisy autonomous periods, which are synchronized by intercellular coupling through the Delta-Notch pathway. Here we ask whether Delta-Notch coupling additionally influences the collective period of the segmentation clock. Using multiple-embryo time-lapse microscopy, we show that disruption of Delta-Notch intercellular coupling increases the period of zebrafish somitogenesis. Embryonic segment length and the spatial wavelength of oscillating gene expression also increase correspondingly, indicating an increase in the segmentation clocks period. Using a theory based on phase oscillators in which the collective period self-organizes because of time delays in coupling, we estimate the cell-autonomous period, the coupling strength, and the coupling delay from our data. Further supporting the role of coupling delays in the clock, we predict and experimentally confirm an instability resulting from decreased coupling delay time. Synchronization of cells by Delta-Notch coupling regulates the collective period of the segmentation clock. Our identification of the first segmentation clock period mutants is a critical step toward a molecular understanding of temporal control in this system. We propose that collective control of period via delayed coupling may be a general feature of biological clocks.
Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoder
We present a mathematical study of the emergence of phenotypic heterogeneity in vascularised tumours. Our study is based on formal asymptotic analysis and numerical simulations of a system of non-local parabolic equations that describes the phenotypi
In mammals, most cells in the brain and peripheral tissues generate circadian (~24hr) rhythms autonomously. These self-sustained rhythms are coordinated and entrained by a master circadian clock in the suprachiasmatic nucleus (SCN). Within the SCN, t
Self-regulation of living tissue as an example of self-organization phenomena in active fractal systems of biological, ecological, and social nature is under consideration. The characteristic feature of these systems is the absence of any governing c
We consider a mathematical model for the evolutionary dynamics of tumour cells in vascularised tumours under chemotherapy. The model comprises a system of coupled partial integro-differential equations for the phenotypic distribution of tumour cells,