ترغب بنشر مسار تعليمي؟ اضغط هنا

SOAR Imaging of sub-Damped Lyman-Alpha Systems at z<1

430   0   0.0 ( 0 )
 نشر من قبل Joseph Meiring
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joseph D. Meiring




اسأل ChatGPT حول البحث

We present deep ground based imaging of the environments of five QSOs that contain sub-Damped Lyman-alpha systems at z<1 with the SOAR telescope and SOI camera. We detect a clear surplus of galaxies in these small fields, supporting the assumption that we are detecting the galaxies responsible for the absorption systems. Assuming these galaxies are at the redshift of the absorption line systems, we detect luminous L>L* galaxies for four of the five fields within 10 of the QSO. In contrast to previous imaging surveys of DLA systems at these redshifts, which indicate a range of morphological types and luminosities for the host galaxies of the systems, the galaxies we detect in these sub-DLA fields appear to be luminous (L>L*). In the case of the absorber towards Q1009-0026 at z=0.8866 we have spectroscopic confirmation that the candidate galaxy is at the redshift of the absorber, at an impact parameter of ~35 kpc with a luminosity of 3 < L/L* < 8 depending on the magnitude of the K-correction. These observations are in concordance with the view that sub-DLAs may be more representative of massive galaxies than DLA systems. The environments of the absorbers span a range of types, from the inner disk of a galaxy, the periphery of a luminous galaxy, and the outskirts of interacting galaxies. The large impact parameters to some of the candidate galaxies suggest that galactic outflows or tidal tails are likely responsible for the material seen in absorption. We find a weak correlation between N(HI) and the impact parameter at the 2 sigma level, which may be expected from the heterogeneous population of galaxies hosting the absorption line systems and random orientation angles. In addition, we detect a possible gravitationally lensed image of the BL-Lac object Q0826-2230.



قيم البحث

اقرأ أيضاً

Damped Lyman-alpha absorbers (DLAs), seen in absorption against a background quasar, provide the most detailed probes available of element abundances in the Universe over > 90 % of its age. DLAs can be used to observationally measure the global mean metallicity in the Universe and its evolution with time. Paradoxically, these observations are more difficult at lower redshifts, where the absorber rest-frame UV spectra are cut-off due to the atmospheric absorption. We present here high-resolution VLT/UVES observations of several elements contained in three DLAs and one sub-DLA with 0.6<z_abs<0.9. We detect Mg I, Mg II, Fe II, Zn II, Cr II, Mn II, Ti II and Ca II. Our observations more than double the high-resolution sample of [Zn/H] at z<1. We also report the discovery of three metal-rich systems, whereas most previous measurements show low N(HI)-weighted mean metallicity projecting to about 1/6th solar level at z=0. We derive [Zn/H]=-0.11+/-0.04 at z_abs=0.725, [Zn/H]=-0.54+/-0.20 at z_abs=0.740 and [Zn/H]=-0.49+/-0.22 at z_abs=0.652, plus one additional upper limit ([Zn/H]<-0.36 at z_abs=0.842). These measurements confirm the existence of quasar absorbers with relatively high metallicities based on abundance estimates free from the effect of dust depletion. Possible implications of these results for the metallicity of neutral gas phase in the past ~ 8 Gyr are presented and compared with models.
We report the discovery of a super-damped Lyman-alpha absorber at $z_{abs}=2.2068$ toward QSO Q1135-0010 in the Sloan Digital Sky Survey, and follow-up VLT UVES spectroscopy. Voigt profile fit to the DLA line indicates log $N_{rm H I} = 22.05 pm 0.1$ . This is the second QSO DLA discovered to date with such high $N_{rm H I}$. We derive element abundances [Si/H] = $-1.10 pm 0.10$, [Zn/H] = $-1.06 pm 0.10$, [Cr/H] = $-1.55 pm 0.10$, [Ni/H] = $-1.60 pm 0.10$, [Fe/H] = $-1.76 pm 0.10$, [Ti/H] = $-1.69 pm 0.11$, [P/H] = $-0.93 pm 0.23$, and [Cu/H] = $-0.75 pm 0.14$. Our data indicate detection of Ly-$alpha$ emission in the DLA trough, implying a star formation rate of $sim$10 $M_{odot}$ yr$^{-1}$ in the absence of dust attenuation. C II$^{*} , lambda 1336$ absorption is also detected, suggesting SFR surface density $-2 < {rm log} , dot{psi_{*}} < 0$ $M_{odot}$ yr$^{-1}$ kpc$^{-2}$. We estimate electron density in the range $3.5 times 10^{-4}$ to 24.7 cm$^{-3}$ from C II$^{*}$/C II, and $sim$0.5-0.9 cm$^{-3}$ from Si II$^{*}$/Si II. Overall, this is a robustly star-forming, moderately enriched absorber, but with relatively low dust depletion. Fitting of the SDSS spectrum yields low reddening for Milky Way, LMC, or SMC extinction curves. No CO absorption is detected, and C I absorption is weak. The low dust and molecular content, reminiscent of some SMC sight-lines, may result from the lower metallicity, and a stronger radiation field (due to higher SFR). Finally, we compare this absorber with other QSO and GRB DLAs.
Sub-damped Lyman-alpha systems (sub-DLAs) have previously been found to exhibit a steeper metallicity evolution than the classical damped Lyman-alpha systems (DLAs), evolving to close to solar metallicity by z~1. From new high-resolution spectra of 1 7 sub-DLAs we have increased the number of measurements of [Fe/H] at z<1.7 by 25% and compiled the most complete literature sample of sub-DLA and DLA abundances to date. We find that sub-DLAs are indeed significantly more metal-rich than DLAs, but only at z<1.7; the metallicity distributions of sub-DLAs and DLAs at z>1.7 are statistically consistent. We also present the first evidence that sub-DLAs follow a velocity width-metallicity correlation over the same velocity range as DLAs, but the relation is offset to higher metallicities than the DLA relation. On the basis of these results, we revisit the previous explanation that the systematically higher metallicities observed in sub-DLAs are indicative of higher host galaxy masses. We discuss the various problems that this interpretation encounters and conclude that in general sub-DLAs are not uniquely synonymous with massive galaxies. We rule out physically related sources of bias (dust, environment, ionization effects) and examine systematics associated with the selection and analysis of low-redshift sub-DLAs. We propose that the high metallicities of sub-DLAs at z<1.7 that drives an apparently steep evolution may be due to the selection of most low-redshift sub-DLAs based on their high MgII equivalent widths.
148 - Andrew J. Fox 2009
We continue our recent work to characterize the plasma content of high-redshift damped and sub-damped Lyman-alpha systems (DLAs/sub-DLAs), which represent multi-phase gaseous (proto)galactic disks and halos seen toward a background source. We survey N V absorption in a sample of 91 DLAs and 18 sub-DLAs in the redshift range 1.67<z<4.28 with unblended coverage of the N V doublet, using data from VLT/UVES, Keck/HIRES, and Keck/ESI. In DLAs, we find eight secure N V detections, four marginal detections, and 79 non-detections. The detection rate of N V in DLAs is therefore 13^{+5}_{-4}%. Two sub-DLA N V detections are found among a sample of 18, at a similar detection rate of 11^{+15}_{-7}%. We show that the N V detection rate is a strong function of metallicity, increasing by a factor of ~4 at [N/H]=[NI/HI]>-2.3. The N V and CIV component b-value distributions in DLAs are statistically similar, but the median b(N V) of 18 km/s is lower than the median b(O VI) of 25 km/s. Some ~20% of the N V components have b<10 km/s and thus arise in warm photoionized plasma at log (T/K)<4.92; local sources of ionizing radiation (as opposed to the extragalactic background) are required to keep the cloud sizes physically reasonable. The nature of the remaining ~80% of (broad) N V components is unclear; models of radiatively-cooling collisionally-ionized plasma at log(T/K)=5.2-5.4 are fairly successful in reproducing the observed integrated high-ion column density ratios and the component line widths, but we cannot rule out photoionization by local sources. Finally, we identify several unusual DLAs with extremely low metallicity (<0.01 solar) but strong high-ion absorption [log N(N V)>14 or log N(O VI)>14.2] that present challenges to either galactic inflow or outflow models.
We study the H2 molecular content in high redshift damped Lyman-alpha systems (DLAs) as a function of the HI column density. We find a significant increase of the H2 molecular content around log N(HI) (cm^-2)~21.5-22, a regime unprobed until now in i ntervening DLAs, beyond which the majority of systems have log N(H2) > 17. This is in contrast with lines of sight towards nearby stars, where such H2 column densities are always detected as soon as log N(HI)>20.7. This can qualitatively be explained by the lower average metallicity and possibly higher surrounding UV radiation in DLAs. However, unlike in the Milky Way, the overall molecular fractions remain modest, showing that even at a large N(HI) only a small fraction of overall HI is actually associated with the self-shielded H2 gas. Damped Lyman-alpha systems with very high-N(HI) probably arise along quasar lines of sight passing closer to the centre of the host galaxy where the gas pressure is higher. We show that the colour changes induced on the background quasar by continuum (dust) and line absorption (HI Lyman and H2 Lyman & Werner bands) in DLAs with log N(HI)~22 and metallicity ~1/10 solar is significant, but not responsible for the long-discussed lack of such systems in optically selected samples. Instead, these systems are likely to be found towards intrinsically fainter quasars that dominate the quasar luminosity function. Colour biasing should in turn be severe at higher metallicities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا