ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing spin relaxation in an individual InGaAs quantum dot using a single electron optical spin memory device

252   0   0.0 ( 0 )
 نشر من قبل Vase Jovanov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate all optical electron spin initialization, storage and readout in a single self-assembled InGaAs quantum dot. Using a single dot charge storage device we monitor the relaxation of a single electron over long timescales exceeding 40{mu}s. The selective generation of a single electron in the quantum dot is performed by resonant optical excitation and subsequent partial exciton ionization; the hole is removed from the quantum dot whilst the electron remains stored. When subject to a magnetic field applied in Faraday geometry, we show how the spin of the electron can be prepared with a polarization up to 65% simply by controlling the voltage applied to the gate electrode. After generation, the electron spin is stored in the quantum dot before being read out using an all optical implementation of spin to charge conversion technique, whereby the spin projection of the electron is mapped onto the more robust charge state of the quantum dot. After spin to charge conversion, the charge state of the dot is repeatedly tested by pumping a luminescence recycling transition to obtain strong readout signals. In combination with spin manipulation using fast optical pulses or microwave pulses, this provides an ideal basis for probing spin coherence in single self-assembled quantum dots over long timescales and developing optimal methods for coherent spin control.



قيم البحث

اقرأ أيضاً

We demonstrate that the spin of a Cr atom in a quantum dot (QD) can be controlled optically and we discuss the main properties of this single spin system. The photoluminescence of individual Cr-doped QDs and their evolution in magnetic field reveal a large magnetic anisotropy of the Cr spin induced by local strain. This results in a splitting of the Cr spin states and in a thermalization on the lower energy states states S$_z$=0 and S$_z$=$pm$1. The magneto-optical properties of Cr-doped QDs can be modelled by an effective spin Hamiltonian including the spin to strain coupling and the influence of the QD symmetry. We also show that a single Cr spin can be prepared by resonant optical pumping. Monitoring the intensity of the resonant fluorescence of the QD during this process permits to probe the dynamics of the optical initialization of the spin. Hole-Cr flip-flops induced by an interplay of the hole-Cr exchange interaction and the coupling with acoustic phonons are the main source of relaxation that explains the efficient resonant optical pumping. The Cr spin relaxation time is measured in the $mu s$ range. We evidence that a Cr spin couples to non-equilibrium acoustic phonons generated during the optical excitation inside or near the QD). Finally we show that the energy of any spin state of an individual Cr atom can be independently tuned by a resonant single mode laser through the optical Stark effect. All these properties make Cr-doped QDs very promising for the development of hybrid spin-mechanical systems where a coherent mechanical driving of an individual spin in an oscillator is required.
We propose a technique to initialize an electron spin in a semiconductor quantum dot with a single short optical pulse. It relies on the fast depletion of the initial spin state followed by a preferential, Purcell-accelerated desexcitation towards th e desired state thanks to a micropillar cavity. We theoretically discuss the limits on initialization rate and fidelity, and derive the pulse area for optimal initialization. We show that spin initialization is possible using a single optical pulse down to a few tens of picoseconds wide.
We demonstrate fast initialization of a single hole spin captured in an InGaAs quantum dot with a fidelity F>99% by applying a magnetic field parallel to the growth direction. We show that the fidelity of the hole spin, prepared by ionization of a ph oto-generated electron-hole pair, is limited by the precession of the exciton spin due to the anisotropic exchange interaction.
Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglemen t operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of the electron spin resonance is possible.
Electron states in a inhomogeneous Ge/Si quantum dot array with groups of closely spaced quantum dots were studied by conventional continuous wave ($cw$) ESR and spin-echo methods. We find that the existence of quantum dot groups allows to increase t he spin relaxation time in the system. Created structures allow us to change an effective localization radius of electrons by external magnetic field. With the localization radius close to the size of a quantum dot group, we obtain fourfold increasing spin relaxation time $T_1$, as compared to conventional homogeneous quantum dot arrays. This effect is attributed to averaging of local magnetic fields related to nuclear spins $^{29}$Si and stabilization of $S_z$-polarization during electron back-and-forth motion within a quantum dot group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا