ترغب بنشر مسار تعليمي؟ اضغط هنا

Inference with Multivariate Heavy-Tails in Linear Models

173   0   0.0 ( 0 )
 نشر من قبل Danny Bickson
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Heavy-tailed distributions naturally occur in many real life problems. Unfortunately, it is typically not possible to compute inference in closed-form in graphical models which involve such heavy-tailed distributions. In this work, we propose a novel simple linear graphical model for independent latent random variables, called linear characteristic model (LCM), defined in the characteristic function domain. Using stable distributions, a heavy-tailed family of distributions which is a generalization of Cauchy, Levy and Gaussian distributions, we show for the first time, how to compute both exact and approximate inference in such a linear multivariate graphical model. LCMs are not limited to stable distributions, in fact LCMs are always defined for any random variables (discrete, continuous or a mixture of both). We provide a realistic problem from the field of computer networks to demonstrate the applicability of our construction. Other potential application is iterative decoding of linear channels with non-Gaussian noise.



قيم البحث

اقرأ أيضاً

This paper presents a new approach, called perturb-max, for high-dimensional statistical inference that is based on applying random perturbations followed by optimization. This framework injects randomness to maximum a-posteriori (MAP) predictors by randomly perturbing the potential function for the input. A classic result from extreme value statistics asserts that perturb-max operations generate unbiased samples from the Gibbs distribution using high-dimensional perturbations. Unfortunately, the computational cost of generating so many high-dimensional random variables can be prohibitive. However, when the perturbations are of low dimension, sampling the perturb-max prediction is as efficient as MAP optimization. This paper shows that the expected value of perturb-max inference with low dimensional perturbations can be used sequentially to generate unbiased samples from the Gibbs distribution. Furthermore the expected value of the maximal perturbations is a natural bound on the entropy of such perturb-max models. A measure concentration result for perturb-max values shows that the deviation of their sampled average from its expectation decays exponentially in the number of samples, allowing effective approximation of the expectation.
We study the heavy-tailed stochastic bandit problem in the cooperative multi-agent setting, where a group of agents interact with a common bandit problem, while communicating on a network with delays. Existing algorithms for the stochastic bandit in this setting utilize confidence intervals arising from an averaging-based communication protocol known as~textit{running consensus}, that does not lend itself to robust estimation for heavy-tailed settings. We propose textsc{MP-UCB}, a decentralized multi-agent algorithm for the cooperative stochastic bandit that incorporates robust estimation with a message-passing protocol. We prove optimal regret bounds for textsc{MP-UCB} for several problem settings, and also demonstrate its superiority to existing methods. Furthermore, we establish the first lower bounds for the cooperative bandit problem, in addition to providing efficient algorithms for robust bandit estimation of location.
This paper presents a new family of backpropagation-free neural architectures, Gated Linear Networks (GLNs). What distinguishes GLNs from contemporary neural networks is the distributed and local nature of their credit assignment mechanism; each neur on directly predicts the target, forgoing the ability to learn feature representations in favor of rapid online learning. Individual neurons can model nonlinear functions via the use of data-dependent gating in conjunction with online convex optimization. We show that this architecture gives rise to universal learning capabilities in the limit, with effective model capacity increasing as a function of network size in a manner comparable with deep ReLU networks. Furthermore, we demonstrate that the GLN learning mechanism possesses extraordinary resilience to catastrophic forgetting, performing comparably to a MLP with dropout and Elastic Weight Consolidation on standard benchmarks. These desirable theoretical and empirical properties position GLNs as a complementary technique to contemporary offline deep learning methods.
Inferring linear dependence between time series is central to our understanding of natural and artificial systems. Unfortunately, the hypothesis tests that are used to determine statistically significant directed or multivariate relationships from ti me-series data often yield spurious associations (Type I errors) or omit causal relationships (Type II errors). This is due to the autocorrelation present in the analysed time series -- a property that is ubiquitous across diverse applications, from brain dynamics to climate change. Here we show that, for limited data, this issue cannot be mediated by fitting a time-series model alone (e.g., in Granger causality or prewhitening approaches), and instead that the degrees of freedom in statistical tests should be altered to account for the effective sample size induced by cross-correlations in the observations. This insight enabled us to derive modified hypothesis tests for any multivariate correlation-based measures of linear dependence between covariance-stationary time series, including Granger causality and mutual information with Gaussian marginals. We use both numerical simulations (generated by autoregressive models and digital filtering) as well as recorded fMRI-neuroimaging data to show that our tests are unbiased for a variety of stationary time series. Our experiments demonstrate that the commonly used $F$- and $chi^2$-tests can induce significant false-positive rates of up to $100%$ for both measures, with and without prewhitening of the signals. These findings suggest that many dependencies reported in the scientific literature may have been, and may continue to be, spuriously reported or missed if modified hypothesis tests are not used when analysing time series.
We study the problem of best arm identification in linear bandits in the fixed-budget setting. By leveraging properties of the G-optimal design and incorporating it into the arm allocation rule, we design a parameter-free algorithm, Optimal Design-ba sed Linear Best Arm Identification (OD-LinBAI). We provide a theoretical analysis of the failure probability of OD-LinBAI. While the performances of existing methods (e.g., BayesGap) depend on all the optimality gaps, OD-LinBAI depends on the gaps of the top $d$ arms, where $d$ is the effective dimension of the linear bandit instance. Furthermore, we present a minimax lower bound for this problem. The upper and lower bounds show that OD-LinBAI is minimax optimal up to multiplicative factors in the exponent. Finally, numerical experiments corroborate our theoretical findings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا