ترغب بنشر مسار تعليمي؟ اضغط هنا

A synthetic electric force acting on neutral atoms

153   0   0.0 ( 0 )
 نشر من قبل Yu-Ju Lin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electromagnetism is a simple example of a gauge theory where the underlying potentials -- the vector and scalar potentials -- are defined only up to a gauge choice. The vector potential generates magnetic fields through its spatial variation and electric fields through its time-dependence. We experimentally produce a synthetic gauge field that emerges only at low energy in a rubidium Bose-Einstein condensate: the neutral atoms behave as charged particles do in the presence of a homogeneous effective vector potential. We have generated a synthetic electric field through the time dependence of an effective vector potential, a physical consequence even though the vector potential is spatially uniform.



قيم البحث

اقرأ أيضاً

Neutral atomic Bose condensates and degenerate Fermi gases have been used to realize important many-body phenomena in their most simple and essential forms, without many of the complexities usually associated with material systems. However, the charg e neutrality of these systems presents an apparent limitation - a wide range of intriguing phenomena arise from the Lorentz force for charged particles in a magnetic field, such as the fractional quantum Hall states in two-dimensional electron systems. The limitation can be circumvented by exploiting the equivalence of the Lorentz force and the Coriolis force to create synthetic magnetic fields in rotating neutral systems. This was demonstrated by the appearance of quantized vortices in pioneering experiments on rotating quantum gases, a hallmark of superfluids or superconductors in a magnetic field. However, because of technical issues limiting the maximum rotation velocity, the metastable nature of the rotating state and the difficulty of applying stable rotating optical lattices, rotational approaches are not able to reach the large fields required for quantum Hall physics. Here, we experimentally realize an optically synthesized magnetic field for ultracold neutral atoms, made evident from the appearance of vortices in our Bose-Einstein condensate. Our approach uses a spatially-dependent optical coupling between internal states of the atoms, yielding a Berrys phase sufficient to create large synthetic magnetic fields, and is not subject to the limitations of rotating systems; with a suitable lattice configuration, it should be possible to reach the quantum Hall regime, potentially enabling studies of topological quantum computation.
We start by reviewing the concept of gauge invariance in quantum mechanics, for Abelian and Non-Ableian cases. Then we idescribe how the various gauge potential and field can be associated with the geometrical phase acquired by a quantum mechanical w ave function while adiabatically evolving in a parameter space. Subsequently we show how this concept is exploited to generate light induced gauge field for neutral ultra cold bosonic atoms. As an example of such light induced Abelian and Non Abelian gauge field for ultra cold atoms we disucss ultra cold atoms in a rotating trap and creation of synthetic spin orbit coupling for ultra cold atomic systems using Raman lasers.
183 - Xi-Wang Luo , Jing Zhang , 2020
Hall tube with a tunable flux is an important geometry for studying quantum Hall physics, but its experimental realization in real space is still challenging. Here, we propose to realize a synthetic Hall tube with tunable flux in a one-dimensional op tical lattice with the synthetic ring dimension defined by atomic hyperfine states. We investigate the effects of the flux on the system topology and study its quench dynamics. Utilizing the tunable flux, we show how to realize topological charge pumping, where interesting charge flow and transport are observed in rotated spin basis. Finally, we show that the recently observed quench dynamics in a synthetic Hall tube can be explained by the random flux existing in the experiment.
189 - Daniel Babik 2019
The implementation of the fractional quantum Hall effect in ultracold atomic quantum gases remains, despite substantial advances in the field, a major challenge. Since atoms are electrically neutral, a key ingredient is the generation of sufficiently strong artificial gauge fields. Here we theoretically investigate the synthetization of such fields for bosonic erbium atoms by phase imprinting with two counterpropagating optical Raman beams. Given the nonvanishing orbital angular momentum of the rare-earth atomic species erbium in the electronic ground state and the availability of narrow-line transitions, heating from photon scattering is expected to be lower than in atomic alkali-metal species. We give a parameter regime for which strong synthetic magnetic fields with good spatial homogeneity are predicted. We also estimate the size of the Laughlin gap expected from the s-wave contribution of the interactions for typical experimental parameters of a two-dimensional atomic erbium microcloud. Our analysis shows that cold rare-earth atomic ensembles are highly attractive candidate systems for experimental explorations of the fractional quantum Hall regime.
We propose the creation of an atomic analogue of electronic snake states in which electrons move along one-dimensional snake-like trajectory in the presence of a suitable magnetic field gradient. To this purpose, we propose the creation of laser indu ced synthetic gauge field inside a three-mirror ring cavity and show that under appropriate conditions, the atomic trajectory in such configuration mimics snake-state like motion. We analyse this motion using semi-classical and full quantum mechanical techniques for a single atom. We provide a detailed comparison of the original electronic phenomena and its atomic analogue in terms of relevant energy and length scales and conclude by briefly pointing out the possibility of consequent study of ultra cold condensate in similar ring-cavity configuration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا