ترغب بنشر مسار تعليمي؟ اضغط هنا

Hacking commercial quantum cryptography systems by tailored bright illumination

104   0   0.0 ( 0 )
 نشر من قبل Lars Lydersen
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built of off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.



قيم البحث

اقرأ أيضاً

We experimentally demonstrate that a superconducting nanowire single-photon detector is deterministically controllable by bright illumination. We found that bright light can temporarily make a large fraction of the nanowire length normally-conductive , can extend deadtime after a normal photon detection, and can cause a hotspot formation during the deadtime with a highly nonlinear sensitivity. In result, although based on different physics, the superconducting detector turns out to be controllable by virtually the same techniques as avalanche photodiode detectors. As demonstrated earlier, when such detectors are used in a quantum key distribution system, this allows an eavesdropper to launch a detector control attack to capture the full secret key without being revealed by to many errors in the key.
123 - Zhihao Wu , Anqi Huang , Huan Chen 2020
Quantum key distribution (QKD) has been proved to be information-theoretically secure in theory. Unfortunately, the imperfect devices in practice compromise its security. Thus, to improve the security property of practical QKD systems, a commonly use d method is to patch the loopholes in the existing QKD systems. However, in this work, we show an adversarys capability of exploiting the imperfection of the patch itself to bypass the patch. Specifically, we experimentally demonstrate that, in the detector under test, the patch of photocurrent monitor against the detector blinding attack can be defeated by the pulse illumination attack proposed in this paper. We also analyze the secret key rate under the pulse illumination attack, which theoretically confirmed that Eve can conduct the attack to learn the secret key. This work indicates the importance of inspecting the security loopholes in a detection unit to further understand their impacts on a QKD system. The method of pulse illumination attack can be a general testing item in the security evaluation standard of QKD.
This is a chapter on quantum cryptography for the book A Multidisciplinary Introduction to Information Security to be published by CRC Press in 2011/2012. The chapter aims to introduce the topic to undergraduate-level and continuing-education student s specializing in information and communication technology.
Quantum cryptography is a new method for secret communications offering the ultimate security assurance of the inviolability of a Law of Nature. In this paper we shall describe the theory of quantum cryptography, its potential relevance and the devel opment of a prototype system at Los Alamos, which utilises the phenomenon of single-photon interference to perform quantum cryptography over an optical fiber communications link.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا