ترغب بنشر مسار تعليمي؟ اضغط هنا

A spectropolarimetric view on the nature of the peculiar Type I SN 2005hk

97   0   0.0 ( 0 )
 نشر من قبل Justyn Maund
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J.R. Maund




اسأل ChatGPT حول البحث

We report two spectropolarimetric observations of SN 2005hk, which is a close copy of the very peculiar SN 2002cx, showing low peak luminosity, slow decline, high ionization near peak and an unusually low expansion velocity of only about 7,000 km s^-1. Further to the data presented by Chornock et al., (2006), at -4 days before maximum, we present data of this object taken on 9 November 2005 (near maximum) and 23 November (+ two weeks) that show the continuum and most of the spectral lines to be polarized at levels of about 0.2-0.3%. At both epochs the data corresponds to the Spectropolarimetric Type D1. The general low level of line polarization suggests that the line forming regions for most species observed in the spectrum have a similar shape to that of the photosphere, which deviates from a spherical symmetry by <10%. In comparison with spectropolarimetry of Type Ia and Core-collapse SNe at similar epochs, we find that the properties of SN 2005hk are most similar to those of Type Ia SNe. In particular, we find the low levels of continuum and line polarization to indicate that the explosion mechanism is approximately spherical, with homogeneous ejecta (unlike the chemically segregated ejecta of CCSNe). We discuss the possibility that SN 2005hk was the result of the pure deflagration of a white dwarf and note the issues concerning this interpretation.



قيم البحث

اقرأ أيضاً

$UBVRI$ photometry and medium resolution optical spectroscopy of peculiar Type Ia supernova SN 2005hk are presented and analysed, covering the pre-maximum phase to around 400 days after explosion. The supernova is found to be underluminous compared t o normal Type Ia supernovae. The photometric and spectroscopic evolution of SN 2005hk is remarkably similar to the peculiar Type Ia event SN 2002cx. The expansion velocity of the supernova ejecta is found to be lower than normal Type Ia events. The spectra obtained $gsim 200$ days since explosion do not show the presence of forbidden [ion{Fe}{ii}], [ion{Fe}{iii}] and [ion{Co}{iii}] lines, but are dominated by narrow, permitted ion{Fe}{ii}, NIR ion{Ca}{ii} and ion{Na}{i} lines with P-Cygni profiles. Thermonuclear explosion model with Chandrasekhar mass ejecta and a kinetic energy smaller ($KE = 0.3 times 10^{51} {rm ergs}$) than that of canonical Type Ia supernovae is found to well explain the observed bolometric light curve. The mass of Nifs synthesized in this explosion is $0.18 Msun$. The early spectra are successfully modeled with this less energetic model with some modifications of the abundance distribution. The late spectrum is explained as a combination of a photospheric component and a nebular component.
The Type II-Plateau supernova (SN II-P) SN 2004dj was the first SN II-P for which spectropolarimetry data were obtained with fine temporal sampling before, during, and after the fall off of the photometric plateau -- the point that marks the transiti on from the photospheric to the nebular phase in SNe II-P. Unpolarized during the plateau, SN 2004dj showed a dramatic spike in polarization during the descent off of the plateau, and then exhibited a smooth polarization decline over the next two hundred days. This behavior was interpreted by Leonard et al. (2006) as evidence for a strongly non-spherical explosion mechanism that had imprinted asphericity only in the innermost ejecta. In this brief report, we compare nine similarly well-sampled epochs of spectropolarimetry of the Type II-P SN 2008bk to those of SN 2004dj. In contrast to SN 2004dj, SN 2008bk became polarized well before the end of the plateau and also retained a nearly constant level of polarization through the early nebular phase. Curiously, although the onset and persistence of polarization differ between the two objects, the detailed spectropolarimetric characteristics at the epochs of recorded maximum polarization for the two objects are extremely similar, feature by feature. We briefly interpret the data in light of non-Local-Thermodynamic Equilibrium, time-dependent radiative-transfer simulations specifically crafted for SN II-P ejecta.
204 - J.R. Maund , I. Steele , H. Jermak 2018
The origin of the luminosity of superluminous supernovae (SLSNe) is an unresolved mystery, and a number of very different physical scenarios (including energy injection from magnetars, collision with a dense circumstellar medium and pair instability- induced explosions) have been invoked. The application of polarimetry to normal SNe has been shown to probe the three-dimensional structure of exploding stars, providing clues to the nature of the explosion mechanism. We report imaging linear polarimetry observations of the Type I SLSN 2017egm, in the galaxy NGC 3191, conducted with the Liverpool Telescope and the RINGO3 instrument. Observations were acquired at four epochs, spanning 4 - 19 days after light-curve maximum, however, polarization was not detected at a level of $>3sigma$. At +7 and +15 days, and in the average over all epochs, we find a possible polarization signal, detected at a significance of $approx 2sigma$ in the blue channel. This signal is seen, primarily, in the Stokes $q$ parameter, with a corresponding polarization angle consistent with the orientation of the spiral arm in proximity to the position of SN 2017egm. We interpret this as indicating that any polarization, if present, originates from dust in the host galaxy rather than being intrinsic to the SN itself. Despite its apparent peculiarities, compared to other Type I SLSNe, the polarization characteristics of SN 2017egm are consistent with the previously reported low polarization of other SLSNe of this variety.
We present UBVRIJHK photometry and optical spectroscopy of the so-called peculiar Type Ia supernova 1999by in NGC 2841. The observations began one week before visual maximum light which is well-defined by daily observations. The light curves and spec tra are similar to those of the prototypical subluminous event SN 1991bg. We find that maximum light in B occurred on 1999 May 10.3 UT (JD 2,451,308.8 +/- 0.3) with B=13.66 +/- 0.02 mag and a color of B_max-V_max=0.51 +/- 0.03 mag. The late-time color implies minimal dust extinction from the host galaxy. Our photometry, when combined with the recent Cepheid distance to NGC 2841 (Macri et al. 2001), gives a peak absolute magnitude of M_B=-17.15 +/- 0.23 mag, making SN 1999by one of the least luminous Type Ia events ever observed. We estimate a decline rate parameter of dm15(B)=1.90 mag, versus 1.93 for SN 1991bg, where 1.10 is typical for so-called normal events. We compare SN 1999by with other subluminous events and find that the B_max-V_max color correlates strongly with the decline rate and may be a more sensitive indicator of luminosity than the fading rate for these objects. We find a good correlation between luminosity and the depth of the spectral feature at 580 nm, which had been attributed solely to Si II. We show that in cooler photospheres the 580 nm feature is dominated by Ti II, which provides a simple physical explanation for the correlation. Using only subluminous Type Ia supernovae we derive a Hubble parameter of H_0=75 +12 -11 km/s Mpc, consistent with values found from brighter events.
We present optical and near-IR spectroscopic observations of the luminous blue variable SN 2009ip during its remarkable photometric evolution of 2012. The spectra sample three key points in the SN 2009ip lightcurve, corresponding to its initial brigh tening in August (2012-A) and its dramatic rebrightening in early October (2012-B). Based on line fluxes and velocities measured in our spectra, we find a surprisingly low I(H-alpha)/I(H-beta) ~ 1.3-1.4 in the 2012-B spectra. Such a ratio implies either a rare Case B recombination scenario where H-alpha, but not H-beta, is optically thick, or an extremely high density for the circumstellar material of n_e > 10^13 cm^(-3) The H-alpha line intensity yields a minimum radiating surface area of >~20,000 AU^2 in H-alpha at the peak of SN 2009ips photometric evolution. Combined with the nature of this objects spectral evolution in 2012, a high circumstellar density and large radiating surface area imply the presence of a thin disk geometry around the central star (and, consequently, a possible binary companion), suggesting that the observed 2012-B rebrightening of SN 2009ip can be attributed to the illumination of the disks inner rim by fast-moving ejecta produced by the underlying events of 2012-A.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا