ترغب بنشر مسار تعليمي؟ اضغط هنا

The ultracool-field dwarf luminosity-function and space density from the Canada-France Brown Dwarf Survey

125   0   0.0 ( 0 )
 نشر من قبل C\\'eline Reyl\\'e
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Thanks to recent and ongoing large scale surveys, hundreds of brown dwarfs have been discovered in the last decade. The Canada-France Brown Dwarf Survey is a wide-field survey for cool brown dwarfs conducted with the MegaCam camera on the Canada-France-Hawaii Telescope telescope. Aims. Our objectives are to find ultracool brown dwarfs and to constrain the field brown-dwarf luminosity function and the mass function from a large and homogeneous sample of L and T dwarfs. Methods. We identify candidates in CFHT/MegaCam i and z images and follow them up with pointed near infrared (NIR) imaging on several telescopes. Halfway through our survey we found ~50 T dwarfs and ~170 L or ultra cool M dwarfs drawn from a larger sample of 1400 candidates with typical ultracool dwarfs i - z colours, found in 780 square degrees. Results. We have currently completed the NIR follow-up on a large part of the survey for all candidates from mid-L dwarfs down to the latest T dwarfs known with utracool dwarfs colours. This allows us to draw on a complete and well defined sample of 102 ultracool dwarfs to investigate the luminosity function and space density of field dwarfs. Conclusions. We found the density of late L5 to T0 dwarfs to be 2.0pm0.8 x 10-3 objects pc-3, the density of T0.5 to T5.5 dwarfs to be 1.4pm0.3 x 10-3 objects pc-3, and the density of T6 to T8 dwarfs to be 5.3pm3.1 x 10-3 objects pc-3 . We found that these results agree better with a flat substellar mass function. Three latest dwarfs at the boundary between T and Y dwarfs give the high density 8.3p9.0m5.1 x 10-3 objects pc-3. Although the uncertainties are very large this suggests that many brown dwarfs should be found in this late spectral type range, as expected from the cooling of brown dwarfs, whatever their mass, down to very low temperature.



قيم البحث

اقرأ أيضاً

The Canada-France Brown Dwarf Survey is a wide eld survey for cool brown dwarfs conducted with the MegaCam camera on the CFHT telescope. Our objectives are to nd ultracool brown dwarfs and to constrain the eld brown dwarf mass function from a large a nd homogeneous sample of L and T dwarfs. We identify candidates in CFHT/Megacam i and z images and follow them up with pointed NIR imaging on several telescopes. Our survey has to date found 50 T dwarfs candidates and 170 L or late M dwarf candidates drawn from a larger sample of 1300 candidates with typical ultracool dwarfs i-z colours, found in 900 square degrees. We currently have completed the NIR follow-up on a large part of the survey for all candidates from the latest T dwarfs known to the late L color range. This allows us to build on a complete and well de ned sample of ultracool dwarfs to investigate the luminosity function of eld L and T dwarfs.
We have identified a sample of cool field brown dwarf candidates using IRAC data from the Spitzer Deep, Wide-Field Survey (SDWFS). The candidates were selected from 400,000 SDWFS sources with [4.5] <= 18.5 mag and required to have [3.6]-[4.5] >= 1.5 and [4.5] - [8.0] <= 2.0 on the Vega system. The first color requirement selects objects redder than all but a handful of presently known brown dwarfs with spectral classes later than T7, while the second eliminates 14 probable reddened AGN. Optical detection of 4 of the remaining 18 sources implies they are likely also AGN, leaving 14 brown dwarf candidates. For two of the brightest candidates (SDWFS J143524.44+335334.6 and SDWFS J143222.82+323746.5), the spectral energy distributions including near-infrared detections suggest a spectral class of ~ T8. The proper motion is < 0.25 /yr, consistent with expectations for a luminosity inferred distance of >70 pc. The reddest brown dwarf candidate (SDWFS J143356.62+351849.2) has [3.6] - [4.5]=2.24 and H - [4.5] > 5.7, redder than any published brown dwarf in these colors, and may be the first example of the elusive Y-dwarf spectral class. Models from Burrows et al. (2003) predict larger numbers of cool brown dwarfs should be found for a Chabrier (2003) mass function. Suppressing the model [4.5] flux by a factor of two, as indicated by previous work, brings the Burrows models and observations into reasonable agreement. The recently launched Wide-field Infrared Survey Explorer (WISE) will probe a volume ~40x larger and should find hundreds of brown dwarfs cooler than T7.
As the remnants of stars with initial masses $lesssim$ 8 M$_{odot}$, white dwarfs contain valuable information on the formation histories of stellar populations. In this paper, we use deep, high-quality, u-band photometry from the Canada France Imagi ng Survey (CFIS), griz photometry from Pan-STARRS 1 (PS1), as well as proper motions from Gaia DR2, to select 25,156 white dwarf candidates over $sim$4500 deg$^2$ using a reduced proper motion diagram. We develop a new white dwarf population synthesis code that returns mock observations of the Galactic field white dwarf population for a given star formation history, while simultaneously taking into account the geometry of the Milky Way, survey parameters, and selection effects. We use this model to derive the star formation histories of the thin disk, thick disk, and stellar halo. Our results show that the Milky Way disk began forming stars (11.3 $pm$ 0.5) Gyr ago, with a peak rate of (8.8 $pm$ 1.4) M$_{odot}$yr$^{-1}$ at (9.8 $pm$ 0.4) Gyr, before a slow decline to a constant rate until the present day --- consistent with recent results suggesting a merging event with a satellite galaxy. Studying the residuals between the data and best-fit model shows evidence for a slight increase in star formation over the past 3 Gyr. We fit the local fraction of helium-atmosphere white dwarfs to be (21 $pm$ 3) %. Incorporating this methodology with data from future wide-field surveys such as LSST, Euclid, CASTOR, and WFIRST should provide an unprecedented view into the formation of the Milky Way at its earliest epoch through its white dwarfs.
We present discovery imaging and spectroscopy for nine new z ~ 6 quasars found in the Canada-France High-z Quasar Survey (CFHQS) bringing the total number of CFHQS quasars to 19. By combining the CFHQS with the more luminous SDSS sample we are able t o derive the quasar luminosity function from a sample of 40 quasars at redshifts 5.74 < z < 6.42. Our binned luminosity function shows a slightly lower normalisation and flatter slope than found in previous work. The binned data also suggest a break in the luminosity function at M_1450 approx -25. A double power law maximum likelihood fit to the data is consistent with the binned results. The luminosity function is strongly constrained (1 sigma uncertainty < 0.1 dex) over the range -27.5 < M_1450 < -24.7. The best-fit parameters are Phi(M_1450^*) = 1.14 x 10^-8 Mpc^-3 mag^-1, break magnitude M_1450^* = -25.13 and bright end slope beta = -2.81. However the covariance between beta and M_1450^* prevents strong constraints being placed on either parameter. For a break magnitude in the range -26 < M_1450^* < -24 we find -3.8 < beta < -2.3 at 95% confidence. We calculate the z = 6 quasar intergalactic ionizing flux and show it is between 20 and 100 times lower than that necessary for reionization. Finally, we use the luminosity function to predict how many higher redshift quasars may be discovered in future near-IR imaging surveys.
A catalog of 8472 white dwarf (WD) candidates is presented, selected using reduced proper motions from the deep proper motion catalog of Munn et al. 2014. Candidates are selected in the magnitude range 16 < r < 21.5 over 980 square degrees, and 16 < r < 21.3 over an additional 1276 square degrees, within the Sloan Digital Sky Survey (SDSS) imaging footprint. Distances, bolometric luminosities, and atmospheric compositions are derived by fitting SDSS ugriz photometry to pure hydrogen and helium model atmospheres (assuming surface gravities log g = 8). The disk white dwarf luminosity function (WDLF) is constructed using a sample of 2839 stars with 5.5 < M_bol < 17, with statistically significant numbers of stars cooler than the turnover in the luminosity function. The WDLF for the halo is also constructed, using a sample of 135 halo WDs with 5 < M_bol < 16. We find space densities of disk and halo WDs in the solar neighborhood of 5.5 +- 0.1 x 10^-3 pc^-3 and 3.5 +- 0.7 x 10^-5 pc^-3, respectively. We resolve the bump in the disk WDLF due to the onset of fully convective envelopes in WDs, and see indications of it in the halo WDLF as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا