ﻻ يوجد ملخص باللغة العربية
We report exact numerical calculation of chemical potential, condensate fraction and specific heat of $N$ non-interacting bosons confined in an isotropic harmonic oscillator trap in one, two and three dimensions, as also for interacting bosons in a 3D trap. Quasi phase transitions are observed in all these cases, including one-dimension, as shown by a rapid change of all the thermodynamic quantities at the transition point. The change becomes more rapid as $N$ increases in 2D and 3D cases. However with increase in $N$, the sudden change in the nature of specific heat, gets gradually wiped out in 1D, while it becomes more drastic in 2D and 3D. The sudden change in the nature of condensate fraction and chemical potential as $N$ increases becomes more drastic even in 1D. Defining transition exponents, which characterize the nature of a thermodynamic quantity at the transition point of a quasi phase transition, we evaluate them by careful numerical calculation very near the transition temperature. These exponents are found to be independent of the size of the system and whether the bosons are interacting or not, demonstrating their universality property.
We present an alternative method for determining the sound velocity in atomic Bose-Einstein condensates, based on thermodynamic global variables. The total number of trapped atoms was as a function of temperature carefully studied across the phase tr
The dynamical evolution of an inhomogeneous ultracold atomic gas quenched at different controllable rates through the Bose-Einstein condensation phase transition is studied numerically in the premise of a recent experiment in an anisotropic harmonic
A model of two 1D ideal Bose gases A and B with strong AB attractions induced by a p-wave AB Feshbach resonance is studied. The model is solved exactly by a Bose-Bose duality mapping, and it is shown that there is no A-component or B-component Bose-E
We consider the highly spin-imbalanced limit of a two-component Fermi gas, where there is a small density of $downarrow$ impurities attractively interacting with a sea of $uparrow$ fermions. In the single-impurity limit at zero temperature, there exi
We have studied dilute Bose-Bose mixtures of atoms with attractive interspecies and repulsive intraspecies interactions using quantum Monte Carlo methods at $T=0$. Using a number of models for interactions, we determine the range of validity of the u