ﻻ يوجد ملخص باللغة العربية
We present the results of the study of the substructure and galaxy content of ten rich clusters of galaxies in three different superclusters of the Sloan Great Wall. We determine the substructure in clusters using the Mclust package from the R statistical environment and analyse their galaxy content. We analyse the distribution of the peculiar velocities of galaxies in clusters and calculate the peculiar velocity of the first ranked galaxy. We show that clusters in our sample have more than one component; in some clusters different components also have different galaxy content. We find that in some clusters with substructure the peculiar velocities of the first ranked galaxies are large. All clusters in our sample host luminous red galaxies. They can be found both in the central areas of clusters as well as in the outskirts, some of them have large peculiar velocities. About 1/3 of red galaxies in clusters are spirals. The scatter of colours of red ellipticals is in most clusters larger than that of red spirals. The presence of substructure in rich clusters, signs of possible mergers and infall, as well as the large peculiar velocities of the first ranked galaxies suggest that the clusters in our sample are not yet virialized. We present merger trees of dark matter haloes in an N-body simulation to demonstrate the formation of present-day dark matter haloes via multiple mergers during their evolution. In simulated dark matter haloes we find a substructure similar to that in observed clusters.
We present the results of the study of the morphology and galaxy content of the Sloan Great Wall (SGW). We use the luminosity density field to determine superclusters in the SGW, and the fourth Minkowski functional V_3 and the morphological signature
We use extreme value statistics to assess the significance of two of the most dramatic structures in the local Universe: the Shapley supercluster and the Sloan Great Wall. If we assume that Shapley (volume ~ 1.2 x 10^5 (Mpc/h)^3) evolved from an over
In the cosmic web, galaxy superclusters or their high-density cores are the largest objects that may collapse at present or during the future evolution. We study the dynamical state and possible future evolution of galaxy superclusters from the Sloan
We study the morphology, luminosity and mass of the superclusters from the BOSS Great Wall (BGW), a recently discovered very rich supercluster complex at the redshift $z = 0.47$. We have employed the Minkowski functionals to quantify supercluster mor
The Perseus-Pisces supercluster is known as one of the largest structures in the nearby Universe that has been charted by the galaxy and galaxy cluster distributions. For the latter mostly clusters from the Abell catalogue have been used. Here we tak