ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-Point Correlation Functions of SDSS Galaxies: Luminosity and Color Dependence in Redshift and Projected Space

159   0   0.0 ( 0 )
 نشر من قبل Cameron K. McBride
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The three-point correlation function (3PCF) provides an important view into the clustering of galaxies that is not available to its lower order cousin, the two-point correlation function (2PCF). Higher order statistics, such as the 3PCF, are necessary to probe the non-Gaussian structure and shape information expected in these distributions. We measure the clustering of spectroscopic galaxies in the Main Galaxy Sample of the Sloan Digital Sky Survey (SDSS), focusing on the shape or configuration dependence of the reduced 3PCF in both redshift and projected space. This work constitutes the largest number of galaxies ever used to investigate the reduced 3PCF, using over 220,000 galaxies in three volume-limited samples. We find significant configuration dependence of the reduced 3PCF at 3-27 Mpc/h, in agreement with LCDM predictions and in disagreement with the hierarchical ansatz. Below 6 Mpc/h, the redshift space reduced 3PCF shows a smaller amplitude and weak configuration dependence in comparison with projected measurements suggesting that redshift distortions, and not galaxy bias, can make the reduced 3PCF appear consistent with the hierarchical ansatz. The reduced 3PCF shows a weaker dependence on luminosity than the 2PCF, with no significant dependence on scales above 9 Mpc/h. On scales less than 9 Mpc/h, the reduced 3PCF appears more affected by galaxy color than luminosty. We demonstrate the extreme sensitivity of the 3PCF to systematic effects such as sky completeness and binning scheme, along with the difficulty of resolving the errors. Some comparable analyses make assumptions that do not consistently account for these effects.



قيم البحث

اقرأ أيضاً

We measure the luminosity and color dependence and the redshift evolution of galaxy clustering in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Ninth Data Release. We focus on the projected two-point correlation function (2 PCF) of subsets of its CMASS sample, which includes about 260,000 galaxies over ~3,300 sq. deg in the redshift range 0.43<z<0.7. To minimize the selection effect on galaxy clustering, we construct well-defined luminosity and color subsamples by carefully accounting for the CMASS galaxy selection cuts. The 2PCF of the whole CMASS sample, if approximated by a power-law, has a correlation length of r_0=7.93pm0.06Mpc/h and an index of gamma=1.85pm0.01. Clear dependences on galaxy luminosity and color are found for the projected 2PCF in all redshift bins, with more luminous and redder galaxies generally exhibiting stronger clustering and steeper 2PCF. The color dependence is also clearly seen for galaxies within the red sequence, consistent with the behavior of SDSS-II main sample galaxies at lower redshifts. At a given luminosity (k+e corrected), no significant evolution of the projected 2PCFs with redshift is detected for red sequence galaxies. We also construct galaxy samples of fixed number density at different redshifts, using redshift-dependent magnitude thresholds. The clustering of these galaxies in the CMASS redshift range is found to be consistent with that predicted by passive evolution. Our measurements of the luminosity and color dependence and redshift evolution of galaxy clustering will allow for detailed modeling of the relation between galaxies and dark matter halos and new constraints on galaxy formation and evolution.
118 - Tomotsugu Goto 2011
By cross-correlating AKARI infrared (IR) sources with the SDSS galaxies, we identified 2357 infrared galaxies with a spectroscopic redshift. This is not just one of the largest samples of local IR galaxies, but AKARI provides crucial FIR bands (9, 18 , 65, 90, 140, and 160um) in accurately measuring galaxy SED across the peak of the dust emission at ~100um. By fitting modern IR SED models to the AKARI photometry, we measured the total infrared luminosity (L_IR) of individual galaxies more accurately. Using this L_IR, we constructed luminosity functions of infrared galaxies at a median redshift of z=0.031, with 4 times larger sample than previous work. The LF agrees well with that at z=0.0082 (RBGS), showing smooth and continuous evolution toward higher redshift LFs measured in the AKARI NEP deep field. The derived local cosmic IR luminosity density is Omega_IR=3.8x10^8 LsunMpc^-3. We separate galaxies into AGN, star-forming, and composite by using the [NII]/Ha vs [OIII]/Hb line ratios. The fraction of AGN shows a continuous increase with increasing L_IR from 25% to 90% at 9<log L_IR<12.5. The SFR_Ha and L_[OIII] show good correlations with L_IR for SFG (star-forming galaxies) and AGN, respectively. The self-absorption corrected Ha/Hb ratio shows a weak increase with L_IR with a substantial scatter. When we separate IR LFs into contributions from AGN and SFG, the AGN contribution becomes dominant at L_IR>10^11Lsun, coinciding the break of the both SFG and AGN IR LFs. At L_IR<10^11Lsun, SFG dominates IR Lfs. Only 1.1% of Omega_IR is produced by LIRG, and only 0.03% is by ULIRG in the local Universe. This work also provides the most accurate infrared luminosity density of the local Universe to date. Compared with high redshift results from the AKARI NEP deep survey, we observed a strong evolution of Omega_IR^SFG ~(1+z)^4.1+-0.4 and Omega_IR^AGN ~(1+z)^4.1+-0.5 (abridged).
We present the measurements of the luminosity-dependent redshift-space three-point correlation functions (3PCFs) for the Sloan Digital Sky Survey (SDSS) DR7 Main galaxy sample. We compare the 3PCF measurements to the predictions from three different halo and subhalo models. One is the halo occupation distribution (HOD) model and the other two are extensions of the subhalo abundance matching (SHAM) model by allowing the central and satellite galaxies to have different occupation distributions in the host halos and subhalos. Parameters in all the models are chosen to best describe the projected and redshift-space two-point correlation functions (2PCFs) of the same set of galaxies. All three model predictions agree well with the 3PCF measurements for the most luminous galaxy sample, while the HOD model better performs in matching the 3PCFs of fainter samples (with luminosity threshold below $L^*$), which is similar in trend to the case of fitting the 2PCFs. The decomposition of the model 3PCFs into contributions from different types of galaxy triplets shows that on small scales the dependence of the 3PCFs on triangle shape is driven by nonlinear redshift-space distortion (and not by the intrinsic halo shape) while on large scales it reflects the filamentary structure. The decomposition also reveals more detailed differences in the three models, which are related to the radial distribution, the mean occupation function, and the velocity distribution of satellite galaxies inside halos. The results suggest that galaxy 3PCFs can further help constrain the above galaxy-halo relation and test theoretical models.
The three-point correlation function (3PCF) is a powerful probe to investigate the clustering of matter in the Universe in a complementary way with respect to lower-order statistics, providing additional information with respect to the two-point corr elation function and allowing us to shed light on biasing, nonlinear processes, and deviations from Gaussian statistics. In this paper, we analyse the first data release of the VIMOS Public Extragalactic Redshift Survey (VIPERS), determining the dependence of the three-point correlation function on luminosity and stellar mass at $z=[0.5,1.1]$. We exploit the VIPERS Public Data Release 1, consisting of more than 50,000 galaxies with B-band magnitudes in the range $-21.6lesssim M_{rm B}-5log(h)lesssim-19.9$ and stellar masses in the range $9.8lesssimlog(M_star[h^{-2},M_odot])lesssim 10.7$. We measure both the connected 3PCF and the reduced 3PCF in redshift space, probing different configurations and scales, in the range $2.5<r,$[Mpc/h]$<20$. We find a significant dependence of the reduced 3PCF on scales and triangle shapes, with stronger anisotropy at larger scales ($rsim10$ Mpc/h) and an almost flat trend at smaller scales, $rsim2.5$ Mpc/h. Massive and luminous galaxies present a larger connected 3PCF, while the reduced 3PCF is remarkably insensitive to magnitude and stellar masses in the range we explored. These trends, already observed at low redshifts, are confirmed for the first time to be still valid up to $z=1.1$, providing support to the hierarchical scenario for which massive and bright systems are expected to be more clustered. The possibility of using the measured 3PCF to provide independent constraints on the linear galaxy bias $b$ has also been explored, showing promising results in agreement with other probes.
We present the measurement of the two-point cross-correlation function (CCF) of 8,198 Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) quasars and 349,608 DR10 CMASS galaxies from the Baryonic Oscillation Spectroscopic Survey (BOSS) at redshift < z>~0.5 (0.3<z<0.9). The cross-correlation function can be reasonably well fit by a power-law model xi_QG(r)=(r/r_0)^(-gamma) on projected scales of r_p=2-25 Mpc/h with r_0=6.61+-0.25 Mpc/h and gamma=1.69+-0.07. We estimate a quasar linear bias of b_Q=1.38+-0.10 at <z>=0.53 from the CCF measurements. This linear bias corresponds to a characteristic host halo mass of ~4x10^12 M_sun/h, compared to ~10^13 M_sun/h characteristic host halo mass for CMASS galaxies. We divide the quasar sample in luminosity and constrain the luminosity dependence of quasar bias to be db_Q/dlogL=0.20+-0.34 or 0.11+-0.32 (depending on different luminosity divisions) for quasar luminosities -23.5>M_i(z=2)>-25.5, implying a weak luminosity dependence of quasar clustering for the bright end of the quasar population at <z>~0.5. We compare our measurements with theoretical predictions, Halo Occupation Distribution (HOD) models and mock catalogs. These comparisons suggest quasars reside in a broad range of host halos, and the host halo mass distributions significantly overlap with each other for quasars at different luminosities, implying a poor correlation between halo mass and instantaneous quasar luminosity. We also find that the quasar HOD parameterization is largely degenerate such that different HODs can reproduce the CCF equally well, but with different outcomes such as the satellite fraction and host halo mass distribution. These results highlight the limitations and ambiguities in modeling the distribution of quasars with the standard HOD approach and the need for additional information in populating quasars in dark matter halos with HOD. [Abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا