ترغب بنشر مسار تعليمي؟ اضغط هنا

Singularity structure of the pi N scattering amplitude in a meson-exchange model up to energies W < 2.0 GeV

318   0   0.0 ( 0 )
 نشر من قبل Lothar Tiator
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Within the previously developed Dubna-Mainz-Taipei meson-exchange model, the singularity structure of the pi N scattering amplitudes has been investigated. For all partial waves up to F waves and c.m. energies up to W = 2 GeV, the T-matrix poles have been calculated by three different techniques: analytic continuation into the complex energy plane, speed-plot and the regularization method. For all 4-star resonances, we find a perfect agreement between the analytic continuation and the regularization method. We also find resonance poles for resonances that are not so well established, but in these cases the pole positions and residues obtained by analytic continuation can substantially differ from the results predicted by the speed-plot and regularization methods.



قيم البحث

اقرأ أيضاً

We analyze virtual Compton scattering off the nucleon at low energies in a covariant, model-independent formalism. We define a set of invariant functions which, once the irregular nucleon pole terms have been subtracted in a gauge-invariant fashion , is free of poles and kinematical zeros. The covariant treatment naturally allows one to implement the constraints due to Lorentz and gauge invariance, crossing symmetry, and the discrete symmetries. In particular, when applied to the $epto epgamma$ reaction, charge-conjugation symmetry in combination with nucleon crossing generates four relations among the ten originally proposed generalized polarizabilities of the nucleon.
As a first step to analyze the electromagnetic meson production reactions in the nucleon resonance region, the parameters of the hadronic interactions of a dynamical coupled-channel model, developed in {it Physics Reports 439, 193 (2007)}, are determ ined by fitting the $pi N$ scattering data. The channels included in the calculations are $pi N$, $eta N$ and $pipi N$ which has $piDelta$, $rho N$, and $sigma N$ resonant components. The non-resonant meson-baryon interactions of the model are derived from a set of Lagrangians by using a unitary transformation method. One or two bare excited nucleon states in each of $S$, $P$, $D$, and $F$ partial waves are included to generate the resonant amplitudes in the fits. The parameters of the model are first determined by fitting as much as possible the empirical $pi N$ elastic scattering amplitudes of SAID up to 2 GeV. We then refine and confirm the resulting parameters by directly comparing the predicted differential cross section and target polarization asymmetry with the original data of the elastic $pi^{pm} p to pi^{pm} p$ and charge-exchange $pi^- p to pi^0 n$ processes. The predicted total cross sections of $pi N$ reactions and $pi Nto eta N$ reactions are also in good agreement with the data. Applications of the constructed model in analyzing the electromagnetic meson production data as well as the future developments are discussed.
We develop a model of relativistic, charged meson-exchange currents (MEC) for neutrino-nucleus interactions. The two-body current is the sum of seagull, pion-in-flight, pion-pole and $Delta$-pole operators. These operators are obtained from the weak pion-production amplitudes for the nucleon derived in the non-linear $sigma$-model together with weak excitation of the $Delta(1232)$ resonance and its subsequent decay into $Npi$. With these currents we compute the five 2p-2h response functions contributing to $( u_l,l^-)$ and $(overline{ u}_l,l^+)$ reactions in the relativistic Fermi gas model. The total current is the sum of vector and axial two-body currents. The vector current is related to the electromagnetic MEC operator that contributes to electron scattering. This allows one to check our model by comparison with the results of De Pace {em et al.,} Nuclear Physics A 726 (2003) 303. Thus our model is a natural extension of that model to the weak sector with the addition of the axial MEC operator. The dependences of the response functions on several ingredients of the approach are analyzed. Specifically we discuss relativistic effects, quantify the size of the direct-exchange interferences, and the relative importance of the axial versus vector current.
We present our recent progress in the description of neutrino-nucleus interaction in the GeV region, of interest for ongoing and future oscillation experiments. In particular, we discuss the weak excitation of two-particle-two-hole states induced by meson exchange currents in a fully relativistic framework. We compare the results of our model with recent measurements of neutrino scattering cross sections, showing the crucial role played by two-nucleon knockout in the interpretation of the data.
We apply a quark interchange model to spin-dependent and exotic meson-meson scattering. The model includes the complete set of standard quark model forces, including OGE spin-orbit and tensor and scalar confinement spin-orbit. Scattering amplitudes d erived assuming SHO and Coulomb plus linear plus hyperfine meson wavefunctions are compared. In I=2 pi pi we find approximate agreement with the S-wave phase shift from threshold to 1.5 GeV, where we predict an extremum that is supported by the data. Near threshold we find rapid energy dependence that may reconcile theoretical estimates of small scattering lengths with experimental indications of larger ones based on extrapolation of measurements at moderate kpi^2. In PsV scattering we find that the quark-quark L*S and T forces map into L*S and T meson-meson interactions, and the P-wave L*S force is large. Finally we consider scattering in J^PC-exotic channels, and note that some of the Deck effect mechanisms suggested as possible nonresonant origins of the pi_1(1400) signal are not viable in this model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا