ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-contact and instabilities in the anisotropic growth of elastic membranes

137   0   0.0 ( 0 )
 نشر من قبل Martin Michael M\\\"uller
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the morphology of thin discs and rings growing in the circumferential direction. Recent analytical results suggest that this growth produces symmetric excess cones (e-cones). We study the stability of such solutions considering self-contact and bending stress. We show that, contrary to what was assumed in previous analytical solutions, beyond a critical growth factor, no symmetric textit{e}-cone solution is energetically minimal any more. Instead, we obtain skewed e-cone solutions having lower energy, characterized by a skewness angle and repetitive spiral winding with increasing growth. These results are generalized to discs with varying thickness and rings with holes of different radii.



قيم البحث

اقرأ أيضاً

We use coarse grained molecular dynamics simulations to investigate diffusion properties of sheared lipid membranes with embedded transmembrane proteins. In membranes without proteins, we find normal in-plane diffusion of lipids in all flow condition s. Protein embedded membranes behave quite differently: by imposing a simple shear flow and sliding the monolayers of the membrane over each other, the motion of protein clusters becomes strongly superdiffusive in the shear direction. In such a circumstance, subdiffusion regime is predominant perpendicular to the flow. We show that superdiffusion is a result of accelerated chaotic motions of protein--lipid complexes within the membrane voids, which are generated by hydrophobic mismatch or the transport of lipids by proteins.
Motivated by the mechanics of dynamin-mediated membrane tube fission we analyse the stability of fluid membrane tubes subjected to shear flow in azimuthal direction. We find a novel helical instability driven by the membrane shear flow which results in a non-equilibrium steady state for the tube fluctuations. This instability has its onset at shear rates that may be physiologically accessible under the action of dynamin and could also be probed using in-vitro experiments on membrane nanotubes, e.g. using magnetic tweezers. We discuss how such an instability may play a role in the mechanism for dynamin-mediated membrane tube fission.
Interfaces between stratified epithelia and their supporting stromas commonly exhibit irregular shapes. Undulations are particularly pronounced in dysplastic tissues and typically evolve into long, finger-like protrusions in carcinomas. In a previous work (Basan et al., Phys. Rev. Lett. 106, 158101 (2011)), we demonstrated that an instability arising from viscous shear stresses caused by the constant flow due to cell turnover in the epithelium could drive this phenomenon. While interfacial tension between the two tissues as well as mechanical resistance of the stroma tend to maintain a flat interface, an instability occurs for sufficiently large viscosity, cell-division rate and thickness of the dividing region in the epithelium. Here, extensions of this work are presented, where cell division in the epithelium is coupled to the local concentration of nutrients or growth factors diffusing from the stroma. This enhances the instability by a mechanism similar to that of the Mullins-Sekerka instability in single-diffusion processes of crystal growth. We furthermore present the instability for the generalized case of a viscoelastic stroma.
175 - A.P. Zakharov , L.M. Pismen 2015
A propagating beam triggering a local phase transition in a nematic elastomer sets it into a crawling motion, which may morph due to buckling. We consider the motion of the various configurations of slender rods and thin stripes with both uniform and splayed nematic order in cross-section, and detect the dependence of the gait and speed on flexural rigidity and substrate friction.
175 - M.Leoni , T.B. Liverpool 2010
We investigate theoretically the collective dynamics of a suspension of low Reynolds number swimmers that are confined to two dimensions by a thin fluid film. Our model swimmer is characterized by internal degrees of freedom which locally exert activ e stresses (force dipoles or quadrupoles) on the fluid. We find that hydrodynamic interactions mediated by the film can give rise to spontaneous continuous symmetry breaking (swarming), to states with either polar or nematic homogeneous order. For dipolar swimmers, the stroke averaged dynamics are enough to determine the leading contributions to the collective behaviour. In contrast, for quadrupolar swimmers, our analysis shows that detailed features of the internal dynamics play an important role in determining the bulk behaviour. In the broken symmetry phases, we investigate fluctuations of hydrodynamic variables of the system and find that these destabilize order. Interestingly, this instability is not generic and depends on length-scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا