ﻻ يوجد ملخص باللغة العربية
The Kane-Mele (KM) model is proposed to describe the quantum spin Hall effect of electrons on the two-dimensional honeycomb lattice. Here, we will show that, in a certain parameter region, the London equation is obtained from the effective field theory of the layered KM model with an electronic correlation.
Cyclotron spin-flip excitation in a nu=2 quantum Hall system, being separated from the ground state by a slightly smaller gap than the cyclotron energy and from upper magnetoplasma excitation by the Coulomb gap [S. Dickmann and I.V. Kukushkin, Phys.
Motivated by recent transport measurements in high-$T_c$ cuprate superconductors in a magnetic field, we study the thermal Hall conductivity in materials with topological order, focusing on the contribution from neutral spinons. Specifically, differe
The properties of the isotropic incompressible $ u=5/2$ fractional quantum Hall (FQH) state are described by a paired state of composite fermions in zero (effective) magnetic field, with a uniform $p_x+ip_y$ pairing order parameter, which is a non-Ab
Recent theoretical studies have found quantum spin liquid states with spinon Fermi surfaces upon the application of a magnetic field on a gapped state with topological order. We investigate the thermal Hall conductivity across this transition, descri
Knot theory provides a powerful tool for the understanding of topological matters in biology, chemistry, and physics. Here knot theory is introduced to describe topological phases in the quantum spin system. Exactly solvable models with long-range in