ترغب بنشر مسار تعليمي؟ اضغط هنا

Production-decay interferences at NLO in QCD for t-channel single-top production

155   0   0.0 ( 0 )
 نشر من قبل Adrian Signer
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a calculation of O(alpha_s) contributions to the process of t-channel single-top production and decay, which include virtual and real corrections arising from interference of the production and decay subprocesses. The calculation is organized as a simultaneous expansion of the matrix elements in the couplings alpha_{ew},alpha_s and the virtuality of the intermediate top quark, (p_t^2-m_t^2)/m_t^2 ~ Gamma_t/m_t, and extends earlier results beyond the narrow-width approximation.



قيم البحث

اقرأ أيضاً

In this work we present a calculation of both t-channel and s-channel single-top production at next-to-leading order in QCD for the Tevatron and for the LHC at a centre-of-mass energy of 7 TeV. All the cross sections and kinematical distributions pre sented include leading non-factorizable corrections arising from interferences of the production and decay subprocesses, extending previous results beyond the narrow-width approximation. The new off-shell effects are found to be generally small, but can be sizeable close to kinematical end-points and for specific distributions.
We present results for the next-to-leading order QCD corrections to the production and semi-leptonic decays of a top quark pair in hadron collisions, retaining all spin correlations. To evaluate the virtual corrections, we employ generalized D-dimens ional unitarity. The computation is implemented in a numerical program which allows detailed studies of ttbar-related observables at the Tevatron and the LHC.
We compute the non-factorisable contribution to the two-loop helicity amplitude for $t$-channel single-top production, the last missing piece of the two-loop virtual corrections to this process. Our calculation employs analytic reduction to master in tegrals and the auxiliary mass flow method for their fast numerical evaluation. We study the impact of these corrections on basic observables that are measured experimentally in the single-top production process.
We study the hadroproduction of a $Wb$ pair in association with a light jet, focusing on the dominant $t$-channel contribution and including exactly at the matrix-element level all non-resonant and off-shell effects induced by the finite top-quark wi dth. Our simulations are accurate to the next-to-leading order in QCD, and are matched to the HERWIG6 and PYTHIA8 parton showers through the MC@NLO method. We present phenomenological results relevant to the 8 TeV LHC, and carry out a thorough comparison to the case of on-shell $t$-channel single-top production. We formulate our approach so that it can be applied to the general case of matrix elements that feature coloured intermediate resonances and are matched to parton showers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا