ترغب بنشر مسار تعليمي؟ اضغط هنا

A rising cool column as signature for helical flux emergence and formation of prominence and coronal cavity

361   0   0.0 ( 0 )
 نشر من قبل Takenori Okamoto Joten
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Continuous observations were performed of a quiescent prominence with the Solar Optical Telescope (SOT) on board the /emph{Hinode} satellite on 2006 December 23--24. A peculiar slowly-rising column of $/sim10^{4}$ K plasma develops from the lower atmosphere during the observations. The apparent ascent speed of the column is 2 km s$^{-1}$, while the fine structures of the column exhibit much faster motion of up to 20 km s$^{-1}$. The column eventually becomes a faint low-lying prominence. Associated with the appearance of the column, an overlying coronal cavity seen in the X-ray and EUV moves upward at $/sim$5 km s$^{-1}$. We discuss the relationship between these episodes, and suggest that they are due to the emergence of a helical flux rope that undergoes reconnection with lower coronal fields, possibly carrying material into the coronal cavity. Under the assumption of the emerging flux scenario, the lower velocity of 2 km s$^{-1}$ and the higher one of 20 km s$^{-1}$ in the column are attributed to the rising motion of the emerging flux and to the outflow driven by magnetic reconnection between the emerging flux and the pre-existing coronal field, respectively. The present paper gives a coherent explanation of the enigmatic phenomenon of the rising column with the emergence of the helical rope, and its effect on the corona. We discuss the implications that the emergence of such a helical rope has on the dynamo process in the convection zone.



قيم البحث

اقرأ أيضاً

The formation and evolution process and magnetic configuration of solar prominences remain unclear. In order to study the formation process of prominences, we examine continuous observations of a prominence in NOAA AR 10953 with the Solar Optical Tel escope on the emph{Hinode} satellite. As reported in our previous Letter, we find a signature suggesting that a helical flux rope emerges from below the photosphere under a pre-existing prominence. Here we investigate more detailed properties and photospheric indications of the emerging helical flux rope, and discuss their relationship to the formation of the prominence. Our main conclusions are: (1) A dark region with absence of strong vertical magnetic fields broadens and then narrows in Ca textsc{ii} H-line filtergrams. This phenomenon is consistent with the emergence of the helical flux rope as photospheric counterparts. The size of the flux rope is roughly 30,000 km long and 10,000 km wide. The width is larger than that of the prominence. (2) No shear motion or converging flows are detected, but we find diverging flows such as mesogranules along the polarity inversion line. The presence of mesogranules may be related to the emergence of the helical flux rope. (3) The emerging helical flux rope reconnects with magnetic fields of the pre-existing prominence to stabilize the prominence for the next several days. We thus conjecture that prominence coronal magnetic fields emerge in the form of helical flux ropes that contribute to the formation and maintenance of the prominence.
Continuous observations were obtained of active region 10953 with the Solar Optical Telescope (SOT) on board the emph{Hinode} satellite during 2007 April 28 to May 9. A prominence was located over the polarity inversion line (PIL) in the south-east o f the main sunspot. These observations provided us with a time series of vector magnetic fields on the photosphere under the prominence. We found four features: (1) The abutting opposite-polarity regions on the two sides along the PIL first grew laterally in size and then narrowed. (2) These abutting regions contained vertically-weak, but horizontally-strong magnetic fields. (3) The orientations of the horizontal magnetic fields along the PIL on the photosphere gradually changed with time from a normal-polarity configuration to a inverse-polarity one. (4) The horizontal-magnetic field region was blueshifted. These indicate that helical flux rope was emerging from below the photosphere into the corona along the PIL under the pre-existing prominence. We suggest that this supply of a helical magnetic flux into the corona is associated with evolution and maintenance of active-region prominences.
A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (HOP~338, 20,--,30~September 2017), the GREGOR solar telescope, and the textit{Vacuum Tower Telescope} (VTT), investigated numerous targets such as pores, sunspots, and coronal holes. In this study, we focus on the coronal hole region target. On 24~September 2017, a very extended non-polar coronal hole developed patches of flux emergence, which contributed to the decrease of the overall area of the coronal hole. These flux emergence patches erode the coronal hole and transform the area into a more quiet-Sun-like area, whereby bipolar magnetic structures play an important role. Conversely, flux cancellation leads to the reduction of opposite-polarity magnetic fields and to an increase in the area of the coronal hole. Other global coronal hole characteristics, including the evolution of the associated magnetic flux and the aforementioned area evolution in the EUV, are studied using data of the textit{Helioseismic and Magnetic Imager} (HMI) and textit{Atmospheric Imaging Assembly} (AIA) onboard the textit{Solar Dynamics Observatory} (SDO). The interplanetary medium parameters of the solar wind display parameters compatible with the presence of the coronal hole. Furthermore, a particular transient is found in those parameters.
The coronal magnetic field is the primary driver of solar dynamic events. Linear and circular polarization signals of certain infrared coronal emission lines contain information about the magnetic field, and to access this information, either a forwa rd or an inversion method must be used. We study three coronal magnetic configurations that are applicable to polar-crown filament cavities by doing forward calculations to produce synthetic polarization data. We analyze these forward data to determine the distinguishing characteristics of each model. We conclude that it is possible to distinguish between cylindrical flux ropes, spheromak flux ropes, and sheared arcades using coronal polarization measurements. If one of these models is found to be consistent with observational measurements, it will mean positive identification of the magnetic morphology that surrounds certain quiescent filaments, which will lead to a greater understanding of how they form and why they erupt.
71 - H. Hotta , H. Iijima 2020
We investigate the rising flux tube and the formation of sunspots in an unprecedentedly deep computational domain that covers the whole convection zone with a radiative magnetohydrodynamics simulation. Previous calculations had shallow computational boxes (< 30 Mm) and convection zones at a depth of 200 Mm. By using our new numerical code R2D2, we succeed in covering the whole convection zone and reproduce the formation of the sunspot from a simple horizontal flux tube because of the turbulent thermal convection. The main findings are (1) The rising speed of the flux tube is larger than the upward convection velocity because of the low density caused by the magnetic pressure and the suppression of the mixing. (2) The rising speed of the flux tube exceeds 250 m/s at a depth of 18 Mm, while we do not see any clear evidence of the divergent flow 3 hr before the emergence at the solar surface. (3) Initially, the root of the flux tube is filled with the downflows and then the upflow fills the center of the flux tube during the formation of the sunspot. (4) The essential mechanisms for the formation of the sunspot are the coherent inflow and the turbulent transport. (5) The low-temperature region is extended to a depth of at least 40 Mm in the matured sunspot, with the high-temperature region in the center of the flux tube. Some of the findings indicate the importance of the deep computational domain for the flux emergence simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا