ترغب بنشر مسار تعليمي؟ اضغط هنا

NLTE model atmospheres for the hottest white dwarfs: Spectral analysis of the compact component in nova V4743 Sgr

122   0   0.0 ( 0 )
 نشر من قبل Dr. Thomas Rauch
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Rauch




اسأل ChatGPT حول البحث

Half a year after its outburst in September 2002, nova V4743 Sgr evolved into the brightest supersoft X-ray source in the sky with a flux maximum around 30A. We calculated grids of synthetic energy distributions (SEDs) based on NLTE model atmospheres for the analysis of the hottest white dwarfs and present the result of fits to Chandra and XMM-Newton grating X-ray spectra of V4743 Sgr of outstanding quality, exhibiting prominent resonance lines of C V, C VI, N VI, N VII, and O VII in absorption. The nova reached its highest effective temperature (Teff = 740 +/- 70kK) around April 2003 and remained at that temperature at least until September 2003. We conclude that the white dwarf is massive, about 1.1 - 1.2 Msun. The nuclear-burning phase lasted for 2 to 2.5 years after the outburst, probably the average duration for a classical nova. The photosphere of V4743 Sgr was strongly carbon deficient (about times solar) and enriched in nitrogen and oxygen (> 5 times solar). Especially the very low C/N ratio indicates that the material at the white dwarfs surface underwent thermonuclear burning. Thus, this nova retained some of the accreted material and did not eject all of it in outburst. From March to September 2003, the nitrogen abundance is strongly decreasing, probably new material is already been accreted at this stage.



قيم البحث

اقرأ أيضاً

Present X-ray missions like Chandra and XMM-Newton provide high-resolution and high-S/N observations of extremely hot white dwarfs, e.g. burst spectra of novae. Their analysis requires adequate Non-LTE model atmospheres. The Tubingen Non-LTE Model-At mosphere Package TMAP can calculate such model atmospheres and spectral energy distributions at a high level of sophistication. In the framework of the Virtual Observatory, the German Astrophysical Virtual Observatory (GAVO) offers TheoSSA, a Virtual Observatory (VO) service that provides easy access to theoretical SEDs. We present a new grid of SEDs, that is calculated in the parameter range of novae and supersoft X-ray sources.
White dwarfs with metal lines in their spectra act as signposts for post-main sequence planetary systems. Searching the Sloan Digital Sky Survey (SDSS) data release 12, we have identified 231 cool (<9000 K) DZ white dwarfs with strong metal absorptio n, extending the DZ cooling sequence to both higher metal abundances, lower temperatures, and hence longer cooler ages. Of these 231 systems, 104 are previously unknown white dwarfs. Compared with previous work, our spectral fitting uses improved model atmospheres with updated line profiles and line-lists, which we use to derive effective temperatures and abundances for up to 8 elements. We also determine spectroscopic distances to our sample, identifying two halo-members with tangential space-velocities >300 kms-1. The implications of our results on remnant planetary systems are to be discussed in a separate paper.
The spectroscopic features of white dwarfs are formed in the thin upper layer of their stellar photosphere. These features carry information about the white dwarfs surface temperature, surface gravity, and chemical composition (hereafter labels). Exi sting methods to determine these labels rely on complex ab-initio theoretical models which are not always publicly available. Here we present two techniques to determine atmospheric labels from white dwarf spectra: a generative fitting pipeline that interpolates theoretical spectra with artificial neural networks, and a random forest regression model using parameters derived from absorption line features. We test and compare our methods using a large catalog of white dwarfs from the Sloan Digital Sky Survey (SDSS), achieving the same accuracy and negligible bias compared to previous studies. We package our techniques into an open-source Python module wdtools that provides a computationally inexpensive way to determine stellar labels from white dwarf spectra observed from any facility. We will actively develop and update our tool as more theoretical models become publicly available. We discuss applications of our tool in its present form to identify interesting outlier white dwarf systems including those with magnetic fields, helium-rich atmospheres, and double-degenerate binaries.
As they evolve, white dwarfs undergo major changes in surface composition, a phenomenon known as spectral evolution. In particular, some stars enter the cooling sequence with helium atmospheres (type DO) but eventually develop hydrogen atmospheres (t ype DA), most likely through the upward diffusion of residual hydrogen. Our empirical knowledge of this process remains scarce: the fractions of white dwarfs that are born helium-rich and that experience the DO-to-DA transformation are poorly constrained. We tackle this issue by performing a detailed model-atmosphere investigation of 1806 hot ($T_{rm eff} ge 30,000$ K) white dwarfs observed spectroscopically by the Sloan Digital Sky Survey. We first introduce our new generations of model atmospheres and theoretical cooling tracks, both appropriate for hot white dwarfs. We then present our spectroscopic analysis, from which we determine the atmospheric and stellar parameters of our sample objects. We find that $sim$24% of white dwarfs begin their degenerate life as DO stars, among which $sim$2/3 later become DA stars. We also infer that the DO-to-DA transition occurs at substantially different temperatures ($75,000 {rm K} > T_{rm eff} > 30,000$ K) for different objects, implying a broad range of hydrogen content within the DO population. Furthermore, we identify 127 hybrid white dwarfs, including 31 showing evidence of chemical stratification, and we discuss how these stars fit in our understanding of the spectral evolution. Finally, we uncover significant problems in the spectroscopic mass scale of very hot ($T_{rm eff} > 60,000$ K) white dwarfs.
We report on the detection of the linear rms-flux relation in two accreting white dwarf binary systems: V1504 Cyg and KIC 8751494. The rms-flux relation relates the absolute root-mean-square (rms) variability of the light curve to its mean flux. The light curves analysed were obtained with the Kepler satellite at a 58.8 s cadence. The rms-flux relation was previously detected in only one other cataclysmic variable, MV Lyr. This result reenforces the ubiquity of the linear rms-flux relation as a characteristic property of accretion-induced variability, since it has been observed in several black hole binaries, neutron star binaries and active galactic nuclei. Moreover, its detection in V1504 Cyg is the first time the rms-flux relation has been detected in a dwarf nova-type CV during quiescence. This result, together with previous studies, hence points towards a common physical origin of accretion-induced variability, independent of the size, mass, or type of the central accreting compact object.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا