ﻻ يوجد ملخص باللغة العربية
We investigate the expressiveness of backward jumps in a framework of formalized sequential programming called program algebra. We show that - if expressiveness is measured in terms of the computability of partial Boolean functions - then backward jumps are superfluous. If we, however, want to prevent explosion of the length of programs, then backward jumps are essential.
The number of instructions of an instruction sequence is taken for its logical SLOC, and is abbreviated with LLOC. A notion of quantitative expressiveness is based on LLOC and in the special case of operation over a family of single bit registers a c
A combination of program algebra with the theory of meadows is designed leading to a theory of computation in algebraic structures which use in addition to a zero test and copying instructions the instruction set ${x Leftarrow 0, x Leftarrow 1, xLeft
Several Markovian process calculi have been proposed in the literature, which differ from each other for various aspects. With regard to the action representation, we distinguish between integrated-time Markovian process calculi, in which every actio
In control theory, to solve a finite-horizon sequential decision problem (SDP) commonly means to find a list of decision rules that result in an optimal expected total reward (or cost) when taking a given number of decision steps. SDPs are routinely
This paper proposes a definition of what it means for one system description language to encode another one, thereby enabling an ordering of system description languages with respect to expressive power. I compare the proposed definition with other d