We present an analysis of the first space-based far-IR-submm observations of M 33, which measure the emission from the cool dust and resolve the giant molecular cloud complexes. With roughly half-solar abundances, M33 is a first step towards young low-metallicity galaxies where the submm may be able to provide an alternative to CO mapping to measure their H$_2$ content. In this Letter, we measure the dust emission cross-section $sigma$ using SPIRE and recent CO and HI observations; a variation in $sigma$ is present from a near-solar neighborhood cross-section to about half-solar with the maximum being south of the nucleus. Calculating the total H column density from the measured dust temperature and cross-section, and then subtracting the HI column, yields a morphology similar to that observed in CO. The H$_2$/HI mass ratio decreases from about unity to well below 10% and is about 15% averaged over the optical disk. The single most important observation to reduce the potentially large systematic errors is to complete the CO mapping of M 33.