ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced dust heating in the bulges of early-type spiral galaxies

138   0   0.0 ( 0 )
 نشر من قبل C. W. Engelbracht
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stellar density and bar strength should affect the temperatures of the cool (T ~ 20-30 K) dust component in the inner regions of galaxies, which implies that the ratio of temperatures in the circumnuclear regions to the disk should depend on Hubble type. We investigate the differences between cool dust temperatures in the central 3 kpc and disk of 13 nearby galaxies by fitting models to measurements between 70 and 500 microns. We attempt to quantify temperature trends in nearby disk galaxies, with archival data from Spitzer/MIPS and new observations with Herschel/SPIRE, which were acquired during the first phases of the Herschel observations for the KINGFISH (key insights in nearby galaxies: a far-infrared survey with Herschel) sample. We fit single-temperature modified blackbodies to far-infrared and submillimeter measurements of the central and disk regions of galaxies to determine the temperature of the component(s) emitting at those wavelengths. We present the ratio of central-region-to-disk-temperatures of the cool dust component of 13 nearby galaxies as a function of morphological type. We find a significant temperature gradient in the cool dust component in all galaxies, with a mean center-to-disk temperature ratio of 1.15 +/- 0.03. The cool dust temperatures in the central ~3 kpc of nearby galaxies are 23(+/-3)% hotter for morphological types earlier than Sc, and only 9(+/-3)% hotter for later types. The temperature ratio is also correlated with bar strength, with only strongly barred galaxies having a ratio over 1.2. The strong radiation field in the high stellar density of a galactic bulge tends to heat the cool dust component to higher temperatures, at least in early-type spirals with relatively large bulges, especially when paired with a strong bar.



قيم البحث

اقرأ أيضاً

89 - C. Chiappini 2001
We analyze new measurements of the Mg_2 central line strength index and velocity dispersion (sigma) for the galaxies of the ENEAR survey. The observations are now complete (da Costa et al. 2000) and the sample contains 1223 early-type galaxies. We al so analyze the line strength indices for a sample of 95 spiral bulges (from Sa to Sbc). For the early-type galaxies we find: i) that the Mg_2-sigma relation for Es and S0s are nearly the same, with both populations showing comparable scatter, and ii) a marginal difference in the slope of the Mg_2-sigma relation for cluster and field early-type galaxies. However, we suggest that before interpreting such a difference in the framework of a mass-metallicity relation, it is important to take into account the effects of rotation in the Mg_2-sigma relation. Our preliminary results indicate that once the rotation effects are minimized by choosing a sample containing only slow rotators, the Mg_2-sigma relation is similar both for isolated and clustered galaxies. More data on rotational velocities of early-type galaxies are needed to confirm this result. For spiral bulges, we find that their locus in the Mg_2-sigma plane lies always below the one occupied by early-type galaxies.
Since Edwin Hubble introduced his famous tuning fork diagram more than 70 years ago, spiral galaxies and early-type galaxies (ETGs) have been regarded as two distinct families. The spirals are characterized by the presence of disks of stars and gas i n rapid rotation, while the early-types are gas poor and described as spheroidal systems, with less rotation and often non-axisymmetric shapes. The separation is physically relevant as it implies a distinct path of formation for the two classes of objects. I will give an overview of recent findings, from independent teams, that motivated a radical revision to Hubbles classic view of ETGs. These results imply a much closer link between spiral galaxies and ETGs than generally assumed.
Observations of neutral hydrogen (HI) and molecular gas show that 50% of all nearby early-type galaxies (ETGs) contain some cold gas. Molecular gas is always found in small gas discs in the central region of the galaxy, while neutral hydrogen is ofte n distributed in a low-column density disc or ring typically extending well beyond the stellar body. Dust is frequently found in ETGs as well. The goal of our study is to understand the link between dust and cold gas in nearby ETGs as a function of HI content. We analyse deep optical $g-r$ images obtained with the MegaCam camera at the Canada-France-Hawaii Telescope for a sample of 21 HI-rich and 41 HI-poor ETGs. We find that all HI-rich galaxies contain dust seen as absorption. Moreover, in 57 percent of these HI-rich galaxies, the dust is distributed in a large-scale spiral pattern. Although the dust detection rate is relatively high in the HI-poor galaxies ($sim$59 percent), most of these systems exhibit simpler dust morphologies without any evidence of spiral structures. We find that the HI-rich galaxies possess more complex dust morphology extending to almost two times larger radii than HI-poor objects. We measured the dust content of the galaxies from the optical colour excess and find that HI-rich galaxies contain six times more dust (in mass) than HI-poor ones. In order to maintain the dust structures in the galaxies, continuous gas accretion is needed, and the substantial HI gas reservoirs in the outer regions of ETGs can satisfy this need for a long time. We find that there is a good correspondence between the observed masses of the gas and dust, and it is also clear that dust is present in regions further than 3~Reff. Our findings indicate an essential relation between the presence of cold gas and dust in ETGs and offer a way to study the interstellar medium in more detail than what is possible with HI observations.
Aims. We study the dust content of a large optical input sample of 910 early-type galaxies (ETG) in the Virgo cluster, extending also to the dwarf ETG, and examine the results in relation with those on the other cold ISM components. Methods. We searc hed for far-infrared emission in all galaxies of the input sample using the 250 micron image of the Herschel Virgo Cluster Survey (HeViCS). This image covers a large fraction of the cluster. For the detected ETG we measured fluxes in 5 bands from 100 to 500 micron, and estimated the dust mass and temperature with modified black-body fits. Results. Dust is detected above the completeness limit of 25.4 mJy at 250 micron in 46 ETG, 43 of which are in the optically complete part of the input sample. In addition dust is present at fainter levels in another 6 ETG. We detect dust in the 4 ETG with synchrotron emission, including M 87. Dust appears to be much more concentrated than stars and more luminous ETG have higher dust temperatures. Dust detection rates down to the 25.4 mJy limit are 17% for ellipticals, about 40% for lenticulars (S0 + S0a) and around 3% for dwarf ETG. Dust mass does not correlate clearly with stellar mass and is often much more than that expected for a passive galaxy in a closed-box model. The dust-to-stars mass ratio anticorrelates with galaxy luminosity, and for some dwarf ETG reaches values as high as for dusty late-type galaxies. In the Virgo cluster slow rotators appear more likely to contain dust than fast ones. Comparing the dust results with those on HI from ALFALFA, there are only 8 ETG detected both in dust and in HI in the HeViCS area; 39 have dust but only an upper limit on HI, and 8 have HI but only an upper limit on dust. The locations of these galaxies in the cluster are different, with the dusty ETG concentrated in the densest regions, while the HI rich ETG are at the periphery.
We present the measurements of gas and stellar velocity dispersions in 17 circumnuclear star-forming regions (CNSFRs) and the nuclei of three barred spiral galaxies: NGC2903, NGC3310 and NGC3351 from high dispersion spectra. The stellar dispersions h ave been obtained from the CaII triplet (CaT) lines at 8494, 8542, 8662A, while the gas velocity dispersions have been measured by Gaussian fits to the Hbeta and to the [OIII]5007A lines. The CNSFRs, with sizes of about 100 to 150pc in diameter, are seen to be composed of several individual star clusters with sizes between 1.5 and 6.2pc on HST images. Using the stellar velocity dispersions, we have derived dynamical masses for the entire star-forming complexes and for the individual star clusters. Values of the stellar velocity dispersions are between 31 and 73 km/s. Dynamical masses for the whole CNSFRs are between 4.9x10^6 and 1.9x10^8 Mo and between 1.4x10^6 and 1.1x10^7 Mo for the individual star clusters. We have found indications for the presence of two different kinematical components in the ionized gas of the regions. The narrow component of the two-component Gaussian fits seem to have a relatively constant value for all the studied CNSFRs, with estimated values close to 25 km/s. This narrow component could be identified with ionized gas in a rotating disc, while the stars and the fraction of the gas (responsible for the broad component) related to the star-forming regions would be mostly supported by dynamical pressure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا